IDEAS home Printed from https://ideas.repec.org/p/aep/anales/4622.html

Ingreso Estructural Por Área Geográfica: una aplicación para Argentina

Author

Listed:
  • Abbate Nicolás
  • Gasparini Leonardo
  • Gluzmann Pablo Alfredo
  • Montes Rojas Gabriel
  • Sznaider Iván
  • Yatche Tobías

Abstract

El objetivo de este trabajo es obtener estimaciones del ingreso estructural para Argentina con un alto nivel de desagregación geográfica, específicamente a nivel de los más de 50.000 radios censales. Para esto estimamos una serie de modelos para el ingreso per cápita familiar en función de características observables para todas las ondas disponibles de la Encuesta Permanente de Hogares en su versión continua (2003-2022) y generamos predicciones del ingreso utilizando las características observables de los hogares en los censos 2001 y 2010. Argentina ha experimentado fuertes vaivenes económicos durante los últimos 20 años, lo que permite obtener predicciones de ingreso bajo distintos estados de la naturaleza. Al incluir todas las estimaciones, podemos predecir el ingreso estructural, entendido como un concepto de mediano plazo donde son los factores estructurales y no los coyunturales, los que tienen mayor influencia. La construcción de esta clase de mapas tiene una importante gama de aplicaciones, y su precisión, desagregación y temporalidad puede ser mejorada utilizando técnicas de inteligencia artifical sobre las imágenes satelitales de las zonas representadas.

Suggested Citation

  • Abbate Nicolás & Gasparini Leonardo & Gluzmann Pablo Alfredo & Montes Rojas Gabriel & Sznaider Iván & Yatche Tobías, 2023. "Ingreso Estructural Por Área Geográfica: una aplicación para Argentina," Asociación Argentina de Economía Política: Working Papers 4622, Asociación Argentina de Economía Política.
  • Handle: RePEc:aep:anales:4622
    as

    Download full text from publisher

    File URL: https://aaep.org.ar/works/works2023/4622.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    2. Ryan Engstrom & Jonathan Hersh & David Newhouse, 2022. "Poverty from Space: Using High Resolution Satellite Imagery for Estimating Economic Well-being," The World Bank Economic Review, World Bank, vol. 36(2), pages 382-412.
    3. Leopoldo Tornarolli, 2018. "Series Comparables de Indigencia y Pobreza: Una Propuesta Metodológica," CEDLAS, Working Papers 0226, CEDLAS, Universidad Nacional de La Plata.
    4. Christopher Yeh & Anthony Perez & Anne Driscoll & George Azzari & Zhongyi Tang & David Lobell & Stefano Ermon & Marshall Burke, 2020. "Using publicly available satellite imagery and deep learning to understand economic well-being in Africa," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Cuong, Nguyen Viet & Truong, Tran Ngoc & van der Weide, Roy, 2010. "Poverty and inequality maps for rural Vietnam: an application of small area estimation," Policy Research Working Paper Series 5443, The World Bank.
    6. Nguyen Viet Cuong & Tran Ngoc Truong & Roy Van Der Weide, 2010. "Poverty and Inequality Maps in Rural Vietnam: An Application of Small Area Estimation," Asian Economic Journal, East Asian Economic Association, vol. 24(4), pages 355-390, December.
    7. Matías Ciaschi, 2021. "Análisis distributivo utilizando información satelital. El caso de Argentina [Distributive analysis using satellite data. The case of Argenina]," Estudios Economicos, Universidad Nacional del Sur, Departamento de Economia, vol. 38(77), pages 5-38, july-dece.
    8. J. Vernon Henderson & Adam Storeygard & David N. Weil, 2012. "Measuring Economic Growth from Outer Space," American Economic Review, American Economic Association, vol. 102(2), pages 994-1028, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ivan Albina & Leonardo Gasparini & Pablo Gluzmann, 2025. "Grados de Ruralidad: Una Propuesta de Medición para Argentina," CEDLAS, Working Papers 0358, CEDLAS, Universidad Nacional de La Plata.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jung, Woojin, 2023. "Mapping community development aid: Spatial analysis in Myanmar," World Development, Elsevier, vol. 164(C).
    2. Jaax, Alexander, 2020. "Private sector development and provincial patterns of poverty: Evidence from Vietnam," World Development, Elsevier, vol. 127(C).
    3. Lee, Kamwoo & Braithwaite, Jeanine, 2022. "High-resolution poverty maps in Sub-Saharan Africa," World Development, Elsevier, vol. 159(C).
    4. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    5. Piotr Wójcik & Krystian Andruszek, 2022. "Predicting intra‐urban well‐being from space with nonlinear machine learning," Regional Science Policy & Practice, Wiley Blackwell, vol. 14(4), pages 891-913, August.
    6. van der Weide, Roy & Blankespoor, Brian & Elbers, Chris & Lanjouw, Peter, 2024. "How accurate is a poverty map based on remote sensing data? An application to Malawi," Journal of Development Economics, Elsevier, vol. 171(C).
    7. Andrea Matranga & Joan Serrat & Jonathan Hersh & Andre Groeger & Hannes Mueller, 2021. "Monitoring War Destruction from Space Using Machine Learning," Working Papers 1257, Barcelona School of Economics.
    8. Matthieu Clément & Lucie Piaser, 2022. "Geography of Income and Education Inequalities in Mexico: Evidence from Small Area Estimation and Exploratory Spatial Analysis," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(2), pages 703-732, April.
    9. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
    10. Hussein Suleiman & Minh-Thu Thi Nguyen & Carlos Mendez, 2025. "Predicting subnational GDP in Vietnam with remote sensing data: a machine learning approach," Letters in Spatial and Resource Sciences, Springer, vol. 18(1), pages 1-12, December.
    11. Corral, Paul & Henderson, Heath & Segovia, Sandra, 2025. "Poverty mapping in the age of machine learning," Journal of Development Economics, Elsevier, vol. 172(C).
    12. Lanjouw, Peter & Marra, Marleen & Nguyen, Cuong, 2013. "Vietnam's evolving poverty map : patterns and implications for policy," Policy Research Working Paper Series 6355, The World Bank.
    13. Jung, Woojin & Ghadimi, Saeed & Ntarlagiannis, Dimitrios & Kim, Andrew H., 2025. "Using Artificial Intelligence/machine learning to evaluate the distribution of community development aid across Myanmar," Socio-Economic Planning Sciences, Elsevier, vol. 98(C).
    14. Newhouse,David Locke, 2023. "Small Area Estimation of Poverty and Wealth Using Geospatial Data : What Have We Learned SoFar ?," Policy Research Working Paper Series 10512, The World Bank.
    15. Guanghua Chi & Han Fang & Sourav Chatterjee & Joshua E. Blumenstock, 2022. "Microestimates of wealth for all low- and middle-income countries," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 119(3), pages 2113658119-, January.
    16. Anh Thu Quang Pham & Pundarik Mukhopadhaya & Ha Vu, 2020. "Targeting Administrative Regions for Multidimensional Poverty Alleviation: A Study on Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(1), pages 143-189, July.
    17. Nicolás F Abbate & Leonardo Gasparini & Franco Ronchetti & Facundo M Quiroga, 2026. "Deep learning with satellite images enables high-resolution income estimation: A case study of Buenos Aires," PLOS ONE, Public Library of Science, vol. 21(1), pages 1-34, January.
    18. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    19. Masaki,Takaaki & Newhouse,David Locke & Silwal,Ani Rudra & Bedada,Adane & Engstrom,Ryan, 2020. "Small Area Estimation of Non-Monetary Poverty with Geospatial Data," Policy Research Working Paper Series 9383, The World Bank.
    20. Weipan Xu & Qiumeng Li & Yaofu Huang & Yu Gu & Xun Li, 2025. "Beyond surveys: high-resolution mapping of rural wealth in China using satellite and street view imagery," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-13, December.

    More about this item

    JEL classification:

    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials
    • D72 - Microeconomics - - Analysis of Collective Decision-Making - - - Political Processes: Rent-seeking, Lobbying, Elections, Legislatures, and Voting Behavior

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aep:anales:4622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Juan Manuel Quintero (email available below). General contact details of provider: https://edirc.repec.org/data/aaeppea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.