IDEAS home Printed from https://ideas.repec.org/a/spr/lsprsc/v18y2025i1d10.1007_s12076-025-00397-z.html
   My bibliography  Save this article

Predicting subnational GDP in Vietnam with remote sensing data: a machine learning approach

Author

Listed:
  • Hussein Suleiman

    (Nagoya University)

  • Minh-Thu Thi Nguyen

    (Nagoya University)

  • Carlos Mendez

    (Nagoya University)

Abstract

Official subnational Gross Domestic Product (GDP) data in Vietnam has been available only since 2010, hindering the analysis of long-term dynamics of local development. Based on remote sensing data and machine learning methods, we construct a subnational GDP indicator for the 63 Vietnamese provinces from 1992 to 2009. Specifically, we rely on nighttime lights (NTL), agricultural land, and climate datasets and employ six machine learning algorithms to construct the GDP dataset. We compare the accuracy of several machine learning algorithms and compare the predicted subnational GDP of the best-performing algorithm using two nighttime lights datasets. We show consistent predictions using both datasets, and construct the subnational GDP dataset using the NTL data with the longer temporal coverage. This new dataset allows researchers and policymakers to analyze long-term economic trends at the subnational level in Vietnam, filling a critical gap in historical economic data.

Suggested Citation

  • Hussein Suleiman & Minh-Thu Thi Nguyen & Carlos Mendez, 2025. "Predicting subnational GDP in Vietnam with remote sensing data: a machine learning approach," Letters in Spatial and Resource Sciences, Springer, vol. 18(1), pages 1-12, December.
  • Handle: RePEc:spr:lsprsc:v:18:y:2025:i:1:d:10.1007_s12076-025-00397-z
    DOI: 10.1007/s12076-025-00397-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12076-025-00397-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12076-025-00397-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nguyen Viet Cuong & Tran Ngoc Truong & Roy Van Der Weide, 2010. "Poverty and Inequality Maps in Rural Vietnam: An Application of Small Area Estimation," Asian Economic Journal, East Asian Economic Association, vol. 24(4), pages 355-390, December.
    2. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    3. Gibson, John & Olivia, Susan & Boe-Gibson, Geua & Li, Chao, 2021. "Which night lights data should we use in economics, and where?," Journal of Development Economics, Elsevier, vol. 149(C).
    4. Chris Elbers & Jean O. Lanjouw & Peter Lanjouw, 2003. "Micro--Level Estimation of Poverty and Inequality," Econometrica, Econometric Society, vol. 71(1), pages 355-364, January.
    5. Lanjouw, P. & Marra, M.R., 2018. "Urban poverty across the spectrum of Vietnam’s towns and cities," World Development, Elsevier, vol. 110(C), pages 295-306.
    6. Minh-Thu Thi Nguyen, 2024. "Provincial income convergence in Vietnam: spatio-temporal dynamics and conditioning factors," Asia-Pacific Journal of Regional Science, Springer, vol. 8(2), pages 429-460, June.
    7. William Nordhaus & Xi Chen, 2015. "A sharper image? Estimates of the precision of nighttime lights as a proxy for economic statistics," Journal of Economic Geography, Oxford University Press, vol. 15(1), pages 217-246.
    8. Cuong, Nguyen Viet & Truong, Tran Ngoc & van der Weide, Roy, 2010. "Poverty and inequality maps for rural Vietnam: an application of small area estimation," Policy Research Working Paper Series 5443, The World Bank.
    9. Keola, Souknilanh & Andersson, Magnus & Hall, Ola, 2015. "Monitoring Economic Development from Space: Using Nighttime Light and Land Cover Data to Measure Economic Growth," World Development, Elsevier, vol. 66(C), pages 322-334.
    10. Nattapong Puttanapong & Nutchapon Prasertsoong & Wichaya Peechapat, 2023. "Predicting Provincial Gross Domestic Product Using Satellite Data and Machine Learning Methods: A Case Study of Thailand," Asian Development Review (ADR), World Scientific Publishing Co. Pte. Ltd., vol. 40(02), pages 39-85, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GIBSON, John & ZHANG, Xiaoxuan & PARK, Albert & YI, Jiang & XI, Li, 2024. "Remotely measuring rural economic activity and poverty : Do we just need better sensors?," CEI Working Paper Series 2023-08, Center for Economic Institutions, Institute of Economic Research, Hitotsubashi University.
    2. Anh Thu Quang Pham & Pundarik Mukhopadhaya & Ha Vu, 2020. "Targeting Administrative Regions for Multidimensional Poverty Alleviation: A Study on Vietnam," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 150(1), pages 143-189, July.
    3. van der Weide, Roy & Blankespoor, Brian & Elbers, Chris & Lanjouw, Peter, 2024. "How accurate is a poverty map based on remote sensing data? An application to Malawi," Journal of Development Economics, Elsevier, vol. 171(C).
    4. John Gibson & Susan Olivia & Geua Boe‐Gibson, 2020. "Night Lights In Economics: Sources And Uses," Journal of Economic Surveys, Wiley Blackwell, vol. 34(5), pages 955-980, December.
    5. Jesson A. Pagaduan, 2022. "Do higher‐quality nighttime lights and net primary productivity predict subnational GDP in developing countries? Evidence from the Philippines," Asian Economic Journal, East Asian Economic Association, vol. 36(3), pages 288-317, September.
    6. Peter Lanjouw & Marleen Marra & Cuong Nguyen, 2017. "Vietnam’s Evolving Poverty Index Map: Patterns and Implications for Policy," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 133(1), pages 93-118, August.
    7. Fabrizi, Enrico & Trivisano, Carlo, 2016. "Small area estimation of the Gini concentration coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 223-234.
    8. Lanjouw, Peter & Marra, Marleen & Nguyen, Cuong, 2013. "Vietnam's evolving poverty map : patterns and implications for policy," Policy Research Working Paper Series 6355, The World Bank.
    9. Omoniyi Alimi & Geua Boe-Gibson & John Gibson, 2022. "Noisy Night Lights Data: Effects on Research Findings for Developing Countries," Working Papers in Economics 22/12, University of Waikato.
    10. Beyer, Robert & Yao, Jiaxiong & Hu, Yingyao, 2022. "Measuring Quarterly Economic Growth from Outer Space," VfS Annual Conference 2022 (Basel): Big Data in Economics 264007, Verein für Socialpolitik / German Economic Association.
    11. Abbate Nicolás & Gasparini Leonardo & Gluzmann Pablo Alfredo & Montes Rojas Gabriel & Sznaider Iván & Yatche Tobías, 2023. "Ingreso Estructural Por Área Geográfica: una aplicación para Argentina," Asociación Argentina de Economía Política: Working Papers 4622, Asociación Argentina de Economía Política.
    12. repec:lic:licosd:41920 is not listed on IDEAS
    13. Matthieu Clément & Lucie Piaser, 2022. "Geography of Income and Education Inequalities in Mexico: Evidence from Small Area Estimation and Exploratory Spatial Analysis," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 34(2), pages 703-732, April.
    14. Dang, Trang Huyen & Nguyen, Cuong Viet & Phung, Tung Duc, 2022. "Trends and Drivers of Inequality: Recent Evidence from Vietnam," GLO Discussion Paper Series 1067, Global Labor Organization (GLO).
    15. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2022. "The economic impact of weather anomalies," World Development, Elsevier, vol. 151(C).
    16. Jaax, Alexander, 2020. "Private sector development and provincial patterns of poverty: Evidence from Vietnam," World Development, Elsevier, vol. 127(C).
    17. Kola Benson Ajeigbe & Fortune Ganda, 2024. "Leveraging Food Security and Environmental Sustainability in Achieving Sustainable Development Goals: Evidence from a Global Perspective," Sustainability, MDPI, vol. 16(18), pages 1-22, September.
    18. Felbermayr, Gabriel & Gröschl, Jasmin & Sanders, Mark & Schippers, Vincent & Steinwachs, Thomas, 2018. "Shedding Light on the Spatial Diffusion of Disasters," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181556, Verein für Socialpolitik / German Economic Association.
    19. repec:osf:socarx:xvucn_v1 is not listed on IDEAS
    20. Emiliano Magrini & Pierluigi Montalbano, 2012. "Trade openness and vulnerability to poverty: Vietnam in the long-run (1992-2008)," Working Paper Series 3512, Department of Economics, University of Sussex Business School.
    21. Fabien Candau & Tchapo Gbandi & Geoffroy Guepie, 2022. "Beyond the income effect of international trade on ethnic wars in Africa," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(3), pages 517-534, July.
    22. Dickinson, Jeffrey, 2020. "Planes, trains, and automobiles: what drives human-made light?," MPRA Paper 117126, University Library of Munich, Germany.

    More about this item

    Keywords

    Remote sensing; Nighttime lights; Machine learning; Vietnam;
    All these keywords.

    JEL classification:

    • R10 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - General
    • R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
    • R58 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Regional Government Analysis - - - Regional Development Planning and Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lsprsc:v:18:y:2025:i:1:d:10.1007_s12076-025-00397-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.