IDEAS home Printed from https://ideas.repec.org/f/pli297.html
   My authors  Follow this author

Ruipeng Liu

Personal Details

First Name:Ruipeng
Middle Name:
Last Name:Liu
Suffix:
RePEc Short-ID:pli297
[This author has chosen not to make the email address public]
http://www.deakin.edu.au/contact/staff-profile/?pid=4377
Terminal Degree:2008 Institut für Volkswirtschaftslehre; Christian-Albrechts-Universität Kiel (from RePEc Genealogy)

Affiliation

Department of Finance
Business School
Deakin University

Melbourne, Australia
http://www.deakin.edu.au/business/finance

:
+61 3 5227 2655
221 Burwood Highway, Burwood 3125.
RePEc:edi:dfdeaau (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A GARCH model for testing market efficiency," Working Papers fe_2015_01, Deakin University, Department of Economics.
  2. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Working Papers fe_2015_05, Deakin University, Department of Economics.
  3. Jozef Barunik & Tomaso Aste & Tiziana Di Matteo & Ruipeng Liu, 2012. "Understanding the source of multifractality in financial markets," Papers 1201.1535, arXiv.org, revised Jan 2012.
  4. Liu, Ruipeng & Narayan, Paresh, 2011. "The efficient market hypothesis re-visited: new evidence from 100 US firms," Working Papers fe_2011_08, Deakin University, Department of Economics.
  5. Narayan, Paresh Kumar & Liu, Ruipeng, 2010. "Are shocks to commodity prices persistent?," Working Papers eco_2010_02, Deakin University, Department of Economics.
  6. Liu, Ruipeng & Lux, Thomas, 2010. "Flexible and robust modelling of volatility comovements: a comparison of two multifractal models," Kiel Working Papers 1594, Kiel Institute for the World Economy (IfW).
  7. Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2008. "Multifractality and long-range dependence of asset returns: The scaling behaviour of the Markov-switching multifractal model with lognormal volatility components," Economics Working Papers 2008-09, Christian-Albrechts-University of Kiel, Department of Economics.
  8. Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2007. "True and Apparent Scaling: The Proximity of the Markov- Switching Multifractal Model to Long-Range Dependence," Economics Working Papers 2007-06, Christian-Albrechts-University of Kiel, Department of Economics.

Articles

  1. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
  2. Ruipeng Liu & Thomas Lux, 2015. "Non-homogeneous volatility correlations in the bivariate multifractal model," The European Journal of Finance, Taylor & Francis Journals, vol. 21(12), pages 971-991, September.
  3. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Energy Economics, Elsevier, vol. 50(C), pages 391-402.
  4. Narayan, Paresh Kumar & Mishra, Sagarika & Sharma, Susan & Liu, Ruipeng, 2013. "Determinants of stock price bubbles," Economic Modelling, Elsevier, vol. 35(C), pages 661-667.
  5. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
  6. Narayan, Paresh Kumar & Liu, Ruipeng, 2011. "Are shocks to commodity prices persistent?," Applied Energy, Elsevier, vol. 88(1), pages 409-416, January.
  7. Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007. "True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A GARCH model for testing market efficiency," Working Papers fe_2015_01, Deakin University, Department of Economics.

    Cited by:

    1. Afees A. Salisu & Umar B. Ndako & Tirimisiyu F. Oloko & Lateef O. Akanni, 2016. "Unit root modeling for trending stock market series," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(2), pages 82-91, June.
    2. Kuruppuarachchi, Duminda & Premachandra, I.M. & Roberts, Helen, 2019. "A novel market efficiency index for energy futures and their term structure risk premiums," Energy Economics, Elsevier, vol. 77(C), pages 23-33.
    3. Batiston Marques, Thales & Seixas dos Santos, Nelson, 2016. "Do Political News Affect Financial Market Returns? Evidences from Brazil," MPRA Paper 75530, University Library of Munich, Germany.
    4. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    5. Yaya, OlaOluwa S, 2017. "Another Look at the Stationarity of Inflation rates in OECD countries: Application of Structural break-GARCH-based unit root tests," MPRA Paper 88769, University Library of Munich, Germany.
    6. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    7. Bouri, Elie & Gupta, Rangan & Hosseini, Seyedmehdi & Lau, Chi Keung Marco, 2018. "Does global fear predict fear in BRICS stock markets? Evidence from a Bayesian Graphical Structural VAR model," Emerging Markets Review, Elsevier, vol. 34(C), pages 124-142.
    8. Mishra, Vinod & Smyth, Russell, 2017. "Conditional convergence in Australia's energy consumption at the sector level," Energy Economics, Elsevier, vol. 62(C), pages 396-403.
    9. Jammazi, Rania & Ferrer, Román & Jareño, Francisco & Shahzad, Syed Jawad Hussain, 2017. "Time-varying causality between crude oil and stock markets: What can we learn from a multiscale perspective?," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 453-483.
    10. Ramiah, Vikash & Wallace, Damien & Veron, Jose Francisco & Reddy, Krishna & Elliott, Robert, 2019. "The effects of recent terrorist attacks on risk and return in commodity markets," Energy Economics, Elsevier, vol. 77(C), pages 13-22.
    11. Pan, Lei & Mishra, Vinod, 2018. "Stock market development and economic growth: Empirical evidence from China," Economic Modelling, Elsevier, vol. 68(C), pages 661-673.
    12. Yaya, OlaOluwa S & Akinlana, Damola M & Ogbonna, Ahamuefula E, 2017. "Investigating Structural break-GARCH-based Unit root test in US exchange rates," MPRA Paper 88768, University Library of Munich, Germany.
    13. Zhang, Wei & Wang, Pengfei & Li, Xiao & Shen, Dehua, 2018. "The inefficiency of cryptocurrency and its cross-correlation with Dow Jones Industrial Average," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 658-670.
    14. Bernard Njindan Iyke, 2019. "A Test Of The Efficiency Of The Foreign Exchange Market In Indonesia," Bulletin of Monetary Economics and Banking, Bank Indonesia, vol. 0(12th BMEB), pages 1-26, January.

  2. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Working Papers fe_2015_05, Deakin University, Department of Economics.

    Cited by:

    1. Afees A. Salisu & Umar B. Ndako & Tirimisiyu F. Oloko & Lateef O. Akanni, 2016. "Unit root modeling for trending stock market series," Borsa Istanbul Review, Research and Business Development Department, Borsa Istanbul, vol. 16(2), pages 82-91, June.
    2. Lisi, Francesco & Pelagatti, Matteo M., 2018. "Component estimation for electricity market data: Deterministic or stochastic?," Energy Economics, Elsevier, vol. 74(C), pages 13-37.
    3. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    4. Afees A. Salisu & Kazeem Isah, 2017. "Predicting US CPI-Inflation in the presence of asymmetries, persistence, endogeneity, and conditional heteroscedasticity," Working Papers 026, Centre for Econometric and Allied Research, University of Ibadan.
    5. Ji, Qiang & Liu, Bing-Yue & Fan, Ying, 2019. "Risk dependence of CoVaR and structural change between oil prices and exchange rates: A time-varying copula model," Energy Economics, Elsevier, vol. 77(C), pages 80-92.
    6. Ma, Feng & Liu, Jing & Wahab, M.I.M. & Zhang, Yaojie, 2018. "Forecasting the aggregate oil price volatility in a data-rich environment," Economic Modelling, Elsevier, vol. 72(C), pages 320-332.
    7. Noguera-Santaella, José, 2016. "Geopolitics and the oil price," Economic Modelling, Elsevier, vol. 52(PB), pages 301-309.
    8. Yaya, OlaOluwa S, 2017. "Another Look at the Stationarity of Inflation rates in OECD countries: Application of Structural break-GARCH-based unit root tests," MPRA Paper 88769, University Library of Munich, Germany.
    9. Salisu, Afees A. & Isah, Kazeem O. & Oyewole, Oluwatomisin J. & Akanni, Lateef O., 2017. "Modelling oil price-inflation nexus: The role of asymmetries," Energy, Elsevier, vol. 125(C), pages 97-106.
    10. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    11. Li, Bingxin, 2019. "Pricing dynamics of natural gas futures," Energy Economics, Elsevier, vol. 78(C), pages 91-108.
    12. Tsuji, Chikashi, 2018. "Return transmission and asymmetric volatility spillovers between oil futures and oil equities: New DCC-MEGARCH analyses," Economic Modelling, Elsevier, vol. 74(C), pages 167-185.
    13. Chien, Mei-Se & Lee, Chien-Chiang & Hu, Te-Chung & Hu, Hui-Ting, 2015. "Dynamic Asian stock market convergence: Evidence from dynamic cointegration analysis among China and ASEAN-5," Economic Modelling, Elsevier, vol. 51(C), pages 84-98.
    14. Bouri, Elie & Gupta, Rangan & Hosseini, Seyedmehdi & Lau, Chi Keung Marco, 2018. "Does global fear predict fear in BRICS stock markets? Evidence from a Bayesian Graphical Structural VAR model," Emerging Markets Review, Elsevier, vol. 34(C), pages 124-142.
    15. Sam Olofin & Afees A. Salisu, 2017. "Modelling oil price-inflation nexus: The role of asymmetries and structural breaks," Working Papers 020, Centre for Econometric and Allied Research, University of Ibadan.
    16. Afees A. Salisu & Kazeem Isah & Ibrahim D. Raheem, 2018. "Testing the predictability of commodity prices in stock returns: A new perspective," Working Papers 061, Centre for Econometric and Allied Research, University of Ibadan.
    17. Kagraoka, Yusho, 2016. "Common dynamic factors in driving commodity prices: Implications of a generalized dynamic factor model," Economic Modelling, Elsevier, vol. 52(PB), pages 609-617.
    18. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    19. Auer, Benjamin R., 2016. "How does Germany's green energy policy affect electricity market volatility? An application of conditional autoregressive range models," Energy Policy, Elsevier, vol. 98(C), pages 621-628.
    20. Hoang, Thi Hong Van & Lahiani, Amine & Heller, David, 2016. "Is gold a hedge against inflation? New evidence from a nonlinear ARDL approach," Economic Modelling, Elsevier, vol. 54(C), pages 54-66.
    21. Raheem, Ibrahim D., 2017. "Asymmetry and break effects of oil price -macroeconomic fundamentals dynamics: The trade effect channel," The Journal of Economic Asymmetries, Elsevier, vol. 16(C), pages 12-25.
    22. Jammazi, Rania & Ferrer, Román & Jareño, Francisco & Shahzad, Syed Jawad Hussain, 2017. "Time-varying causality between crude oil and stock markets: What can we learn from a multiscale perspective?," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 453-483.
    23. Bilgin, Mehmet Huseyin & Gozgor, Giray & Lau, Chi Keung Marco & Sheng, Xin, 2018. "The effects of uncertainty measures on the price of gold," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 1-7.
    24. Ramiah, Vikash & Wallace, Damien & Veron, Jose Francisco & Reddy, Krishna & Elliott, Robert, 2019. "The effects of recent terrorist attacks on risk and return in commodity markets," Energy Economics, Elsevier, vol. 77(C), pages 13-22.
    25. Veiga, Helena & Ramos, Sofía B. & Martín-Barragán, Belén, 2013. "Correlations between oil and stock markets : a wavelet-based approach," DES - Working Papers. Statistics and Econometrics. WS ws130504, Universidad Carlos III de Madrid. Departamento de Estadística.
    26. Li, Haiqi & Kim, Hyung-Gun & Park, Sung Y., 2015. "The role of financial speculation in the energy future markets: A new time-varying coefficient approach," Economic Modelling, Elsevier, vol. 51(C), pages 112-122.
    27. Afees A. Salisu & Raymond Swaray, 2017. "Forecasting the return volatility of energy prices: A GARCH MIDAS approach," Working Papers 029, Centre for Econometric and Allied Research, University of Ibadan.
    28. Kurniawan, Robi & Managi, Shunsuke, 2018. "Coal consumption, urbanization, and trade openness linkage in Indonesia," Energy Policy, Elsevier, vol. 121(C), pages 576-583.
    29. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2016. "Asymmetric evidence of gasoline price responses in France: A Markov-switching approach," Economic Modelling, Elsevier, vol. 52(PB), pages 467-476.
    30. Belkhouja, Mustapha & Mootamri, Imene, 2016. "Long memory and structural change in the G7 inflation dynamics," Economic Modelling, Elsevier, vol. 54(C), pages 450-462.
    31. Batten, Jonathan A. & Brzeszczynski, Janusz & Ciner, Cetin & Lau, Marco C.K. & Lucey, Brian & Yarovaya, Larisa, 2019. "Price and volatility spillovers across the international steam coal market," Energy Economics, Elsevier, vol. 77(C), pages 119-138.
    32. Yaya, OlaOluwa S & Akinlana, Damola M & Ogbonna, Ahamuefula E, 2017. "Investigating Structural break-GARCH-based Unit root test in US exchange rates," MPRA Paper 88768, University Library of Munich, Germany.
    33. Chou, Kuo-Wei & Tseng, Yi-Heng, 2016. "Oil prices, exchange rate, and the price asymmetry in the Taiwanese retail gasoline market," Economic Modelling, Elsevier, vol. 52(PB), pages 733-741.
    34. Nonejad, Nima, 2017. "Parameter instability, stochastic volatility and estimation based on simulated likelihood: Evidence from the crude oil market," Economic Modelling, Elsevier, vol. 61(C), pages 388-408.
    35. Ibrahim D. Raheem & Kazeem Isah, 2019. "The Jolly Ride of International Reserves and Commodity Prices: Evidence from Predictive Models," Working Papers 063, Centre for Econometric and Allied Research, University of Ibadan.
    36. Salisu, Afees A. & Adeleke, Adegoke I., 2016. "Further application of Narayan and Liu (2015) unit root model for trending time series," Economic Modelling, Elsevier, vol. 55(C), pages 305-314.
    37. Liu, Ming-Hua & Margaritis, Dimitris & Zhang, Yang, 2016. "Competition and petrol pricing in the smartphone era: Evidence from Singapore," Economic Modelling, Elsevier, vol. 53(C), pages 144-155.
    38. Afees A. Salisu & Kazeem Isah, 2017. "Predicting US Inflation: Evidence from a New Approach," Working Papers 039, Centre for Econometric and Allied Research, University of Ibadan.

  3. Jozef Barunik & Tomaso Aste & Tiziana Di Matteo & Ruipeng Liu, 2012. "Understanding the source of multifractality in financial markets," Papers 1201.1535, arXiv.org, revised Jan 2012.

    Cited by:

    1. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Measuring capital market efficiency: Long-term memory, fractal dimension and approximate entropy," FinMaP-Working Papers 18, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    2. Chen, Cheng & Wang, Yudong, 2017. "Understanding the multifractality in portfolio excess returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 346-355.
    3. Nava, Noemi & Di Matteo, T. & Aste, Tomaso, 2016. "Anomalous volatility scaling in high frequency financial data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 434-445.
    4. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    5. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
    6. Chiarucci, Riccardo & Loffredo, Maria I. & Ruzzenenti, Franco, 2017. "Evidences for a structural change in the oil market before a financial crisis: The flat horizon effect," Research in International Business and Finance, Elsevier, vol. 42(C), pages 912-921.
    7. Salat, Hadrien & Murcio, Roberto & Arcaute, Elsa, 2017. "Multifractal methodology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 467-487.
    8. John Goddard & Enrico Onali, 2016. "Long memory and multifractality: A joint test," Papers 1601.00903, arXiv.org.
    9. da Fonseca, Eder Lucio & Ferreira, Fernando F. & Muruganandam, Paulsamy & Cerdeira, Hilda A., 2013. "Identifying financial crises in real time," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1386-1392.
    10. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    11. Ladislav Kristoufek & Miloslav Vosvrda, 2012. "Measuring capital market efficiency: Global and local correlations structure," Papers 1208.1298, arXiv.org.
    12. Sensoy, Ahmet & Hacihasanoglu, Erk, 2014. "Time-varying long range dependence in energy futures markets," Energy Economics, Elsevier, vol. 46(C), pages 318-327.
    13. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    14. Tao, Qizhi & Wei, Yu & Liu, Jiapeng & Zhang, Ting, 2018. "Modeling and forecasting multifractal volatility established upon the heterogeneous market hypothesis," International Review of Economics & Finance, Elsevier, vol. 54(C), pages 143-153.
    15. Siokis, Fotios M., 2014. "European economies in crisis: A multifractal analysis of disruptive economic events and the effects of financial assistance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 283-292.
    16. Francesco Caravelli & James Requeima & Cozmin Ududec & Ali Ashtari & Tiziana Di Matteo & Tomaso Aste, 2015. "Multi-scaling of wholesale electricity prices," Papers 1507.06219, arXiv.org.
    17. Noemi Nava & T. Di Matteo & Tomaso Aste, 2015. "Anomalous volatility scaling in high frequency financial data," Papers 1503.08465, arXiv.org, revised Dec 2015.
    18. Ladislav Kristoufek, 2013. "Testing power-law cross-correlations: Rescaled covariance test," Papers 1307.4727, arXiv.org, revised Aug 2013.
    19. Wu, Liang & Chen, Lei & Ding, Yiming & Zhao, Tongzhou, 2018. "Testing for the source of multifractality in water level records," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 824-839.
    20. Liu, Zhichao & Ma, Feng & Long, Yujia, 2015. "High and low or close to close prices? Evidence from the multifractal volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 50-61.
    21. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    22. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Trinidad Segovia, J.E., 2013. "Measuring the self-similarity exponent in Lévy stable processes of financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5330-5345.
    23. Hiremath, Gourishankar S. & Kattuman, Paul, 2017. "Foreign portfolio flows and emerging stock market: Is the midnight bell ringing in India?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 544-558.
    24. Sensoy, Ahmet & Tabak, Benjamin M., 2016. "Dynamic efficiency of stock markets and exchange rates," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 353-371.
    25. Cao, Guangxi & Cao, Jie & Xu, Longbing, 2013. "Asymmetric multifractal scaling behavior in the Chinese stock market: Based on asymmetric MF-DFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 797-807.
    26. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    27. Stošić, Darko & Stošić, Dusan & Stošić, Tatijana & Stanley, H. Eugene, 2015. "Multifractal analysis of managed and independent float exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 13-18.
    28. Ma, Feng & Wei, Yu & Huang, Dengshi & Chen, Yixiang, 2014. "Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 405(C), pages 171-180.
    29. Sensoy, Ahmet & Tabak, Benjamin M., 2015. "Time-varying long term memory in the European Union stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 147-158.
    30. Kristoufek, Ladislav, 2015. "Finite sample properties of power-law cross-correlations estimators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 513-525.
    31. Maiorino, Enrico & Livi, Lorenzo & Giuliani, Alessandro & Sadeghian, Alireza & Rizzi, Antonello, 2015. "Multifractal characterization of protein contact networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 302-313.
    32. M. Fern'andez-Mart'inez & M. A S'anchez-Granero & Mar'ia Jos'e Mu~noz Torrecillas & Bill McKelvey, 2016. "A comparison among some Hurst exponent approaches to predict nascent bubbles in $500$ company stocks," Papers 1601.04188, arXiv.org.
    33. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    34. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    35. Saâdaoui, Foued, 2018. "Testing for multifractality of Islamic stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 263-273.
    36. Lee, Hojin & Song, Jae Wook & Chang, Woojin, 2016. "Multifractal Value at Risk model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 113-122.

  4. Narayan, Paresh Kumar & Liu, Ruipeng, 2010. "Are shocks to commodity prices persistent?," Working Papers eco_2010_02, Deakin University, Department of Economics.

    Cited by:

    1. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Energy Economics, Elsevier, vol. 50(C), pages 391-402.
    2. Hoang, Thi-Hong-Van & Wong, Wing-Keung & Zhu, Zhenzhen, 2015. "Is gold different for risk-averse and risk-seeking investors? An empirical analysis of the Shanghai Gold Exchange," Economic Modelling, Elsevier, vol. 50(C), pages 200-211.
    3. Vinod Mishra & Russell Smyth, 2014. "Unit root properties of natural gas spot and futures prices: The relevance of heteroskedasticity in high frequency data," Monash Economics Working Papers 20-14, Monash University, Department of Economics.
    4. Yaya, OlaOluwa S, 2017. "Another Look at the Stationarity of Inflation rates in OECD countries: Application of Structural break-GARCH-based unit root tests," MPRA Paper 88769, University Library of Munich, Germany.
    5. Juncal Cunado & Luis A. Gil-Alana & Rangan Gupta, 2018. "Persistence in Trends and Cycles of Gold and Silver Prices: Evidence from Historical Data," Working Papers 201816, University of Pretoria, Department of Economics.
    6. Lau, Lin-Sea & Choong, Chee-Keong & Eng, Yoke-Kee, 2014. "Carbon dioxide emission, institutional quality, and economic growth: Empirical evidence in Malaysia," Renewable Energy, Elsevier, vol. 68(C), pages 276-281.
    7. Salisu, Afees A. & Swaray, Raymond & Oloko, Tirimisiyu F., 2019. "Improving the predictability of the oil–US stock nexus: The role of macroeconomic variables," Economic Modelling, Elsevier, vol. 76(C), pages 153-171.
    8. Vinod Mishra & Russell Smyth, 2014. "Is Monthly US Natural Gas Consumption Stationary? New Evidence from a GARCH Unit Root Test with Structural Breaks," Monash Economics Working Papers 09-14, Monash University, Department of Economics.
    9. Salisu, Afees A. & Mobolaji, Hakeem, 2013. "Modeling returns and volatility transmission between oil price and US–Nigeria exchange rate," Energy Economics, Elsevier, vol. 39(C), pages 169-176.
    10. Afees A. Salisu & Tirimisyu F. Oloko, 2017. "Are daily agricultural grains prices stationary? New evidence from GARCH-based unit root tests," Working Papers 036, Centre for Econometric and Allied Research, University of Ibadan.
    11. Hooi Hooi Lean & Vinod Mishra & Russell Smyth, 2016. "Conditional convergence in US disaggregated petroleum consumption at the sector level," Applied Economics, Taylor & Francis Journals, vol. 48(32), pages 3049-3061, July.
    12. Sam Olofin & Afees A. Salisu, 2017. "Modelling oil price-inflation nexus: The role of asymmetries and structural breaks," Working Papers 020, Centre for Econometric and Allied Research, University of Ibadan.
    13. Afees A. Salisu & Kazeem Isah & Ibrahim D. Raheem, 2018. "Testing the predictability of commodity prices in stock returns: A new perspective," Working Papers 061, Centre for Econometric and Allied Research, University of Ibadan.
    14. Charfeddine, Lanouar, 2016. "Breaks or long range dependence in the energy futures volatility: Out-of-sample forecasting and VaR analysis," Economic Modelling, Elsevier, vol. 53(C), pages 354-374.
    15. Jammazi, Rania & Ferrer, Román & Jareño, Francisco & Shahzad, Syed Jawad Hussain, 2017. "Time-varying causality between crude oil and stock markets: What can we learn from a multiscale perspective?," International Review of Economics & Finance, Elsevier, vol. 49(C), pages 453-483.
    16. Mishra, Vinod & Smyth, Russell, 2016. "Are natural gas spot and futures prices predictable?," Economic Modelling, Elsevier, vol. 54(C), pages 178-186.
    17. Westerlund, Joakim, 2013. "Simple unit root testing in generally trending data with an application to precious metal prices in Asia," Journal of Asian Economics, Elsevier, vol. 28(C), pages 12-27.
    18. Batten, Jonathan A. & Brzeszczynski, Janusz & Ciner, Cetin & Lau, Marco C.K. & Lucey, Brian & Yarovaya, Larisa, 2019. "Price and volatility spillovers across the international steam coal market," Energy Economics, Elsevier, vol. 77(C), pages 119-138.
    19. Yaya, OlaOluwa S & Akinlana, Damola M & Ogbonna, Ahamuefula E, 2017. "Investigating Structural break-GARCH-based Unit root test in US exchange rates," MPRA Paper 88768, University Library of Munich, Germany.
    20. Mostafa, Mohamed M. & El-Masry, Ahmed A., 2016. "Oil price forecasting using gene expression programming and artificial neural networks," Economic Modelling, Elsevier, vol. 54(C), pages 40-53.
    21. Chou, Kuo-Wei & Tseng, Yi-Heng, 2016. "Oil prices, exchange rate, and the price asymmetry in the Taiwanese retail gasoline market," Economic Modelling, Elsevier, vol. 52(PB), pages 733-741.
    22. Salisu, Afees A. & Adeleke, Adegoke I., 2016. "Further application of Narayan and Liu (2015) unit root model for trending time series," Economic Modelling, Elsevier, vol. 55(C), pages 305-314.
    23. Jaunky, Vishal Chandr, 2012. "Is there a material Kuznets curve for aluminium? evidence from rich countries," Resources Policy, Elsevier, vol. 37(3), pages 296-307.
    24. Afees A. Salisu & Raymond Swaray & Idris Adediran, 2018. "Improving the predictability of commodity prices in US inflation: The role of coffee price," Working Papers 041, Centre for Econometric and Allied Research, University of Ibadan.
    25. Onder Buberkoku, 2017. "Examining Energy Futures Market Efficiency Under Multiple Regime Shifts," International Journal of Energy Economics and Policy, Econjournals, vol. 7(6), pages 61-71.

  5. Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2008. "Multifractality and long-range dependence of asset returns: The scaling behaviour of the Markov-switching multifractal model with lognormal volatility components," Economics Working Papers 2008-09, Christian-Albrechts-University of Kiel, Department of Economics.

    Cited by:

    1. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    2. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
    3. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    4. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    5. Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
    6. Saâdaoui, Foued, 2018. "Testing for multifractality of Islamic stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 263-273.

  6. Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2007. "True and Apparent Scaling: The Proximity of the Markov- Switching Multifractal Model to Long-Range Dependence," Economics Working Papers 2007-06, Christian-Albrechts-University of Kiel, Department of Economics.

    Cited by:

    1. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    2. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    3. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
    4. Lux, Thomas & Morales-Arias, Leonardo, 2010. "Relative forecasting performance of volatility models: Monte Carlo evidence," Kiel Working Papers 1582, Kiel Institute for the World Economy (IfW).
    5. Riccardo Junior Buonocore & Tomaso Aste & Tiziana Di Matteo, 2015. "Measuring multiscaling in financial time-series," Papers 1509.05471, arXiv.org, revised Sep 2015.
    6. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    7. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW).
    8. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    9. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2017. "Modeling and forecasting the volatility of carbon dioxide emission allowance prices: A review and comparison of modern volatility models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 692-704.
    10. Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
    11. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    12. Segnon, Mawuli & Lux, Thomas & Gupta, Rangan, 2015. "Modeling and Forecasting Carbon Dioxide Emission Allowance Spot Price Volatility: Multifractal vs. GARCH-type Volatility Models," FinMaP-Working Papers 46, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    13. Liu, Yufang & Zhang, Weiguo & Fu, Junhui, 2016. "Binomial Markov-Switching Multifractal model with Skewed t innovations and applications to Chinese SSEC Index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 56-66.
    14. Mulligan, Robert F., 2017. "The multifractal character of capacity utilization over the business cycle: An application of Hurst signature analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 147-152.
    15. Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
    16. Nasr, Adnen Ben & Lux, Thomas & Ajm, Ahdi Noomen & Gupta, Rangan, 2014. "Forecasting the volatility of the dow jones islamic stock market index: Long memory vs. regime switching," Economics Working Papers 2014-07, Christian-Albrechts-University of Kiel, Department of Economics.
    17. Raffaello Morales & T. Di Matteo & Ruggero Gramatica & Tomaso Aste, 2011. "Dynamical Hurst exponent as a tool to monitor unstable periods in financial time series," Papers 1109.0465, arXiv.org.
    18. Lux, Thomas & Morales-Arias, Leonardo, 2009. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Kiel Working Papers 1532, Kiel Institute for the World Economy (IfW).
    19. Lux, Thomas & Morales-Arias, Leonardo & Sattarhoff, Cristina, 2011. "A Markov-switching multifractal approach to forecasting realized volatility," Kiel Working Papers 1737, Kiel Institute for the World Economy (IfW).
    20. Pakrashi, Vikram & Kelly, Joe & Harkin, Julie & Farrell, Aidan, 2013. "Hurst exponent footprints from activities on a large structural system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1803-1817.
    21. Malo, Pekka, 2009. "Modeling electricity spot and futures price dependence: A multifrequency approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4763-4779.
    22. Mulligan, Robert F., 2014. "Multifractality of sectoral price indices: Hurst signature analysis of Cantillon effects in disequilibrium factor markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 403(C), pages 252-264.
    23. Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.

Articles

  1. Narayan, Paresh Kumar & Liu, Ruipeng & Westerlund, Joakim, 2016. "A GARCH model for testing market efficiency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 41(C), pages 121-138.
    See citations under working paper version above.
  2. Ruipeng Liu & Thomas Lux, 2015. "Non-homogeneous volatility correlations in the bivariate multifractal model," The European Journal of Finance, Taylor & Francis Journals, vol. 21(12), pages 971-991, September.

    Cited by:

    1. Lux, Thomas, 2018. "Inference for nonlinear state space models: A comparison of different methods applied to Markov-switching multifractal models," Economics Working Papers 2018-07, Christian-Albrechts-University of Kiel, Department of Economics.

  3. Narayan, Paresh Kumar & Liu, Ruipeng, 2015. "A unit root model for trending time-series energy variables," Energy Economics, Elsevier, vol. 50(C), pages 391-402.
    See citations under working paper version above.
  4. Narayan, Paresh Kumar & Mishra, Sagarika & Sharma, Susan & Liu, Ruipeng, 2013. "Determinants of stock price bubbles," Economic Modelling, Elsevier, vol. 35(C), pages 661-667.

    Cited by:

    1. Zhang, Yue-Jun & Yao, Ting, 2016. "Interpreting the movement of oil prices: Driven by fundamentals or bubbles?," Economic Modelling, Elsevier, vol. 55(C), pages 226-240.
    2. Shuping Shi, 2016. "Speculative bubbles or market fundamentals? An investigation of US regional housing markets," CAMA Working Papers 2016-46, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    3. Feng, Qu & Wu, Guiying Laura, 2015. "Bubble or riddle? An asset-pricing approach evaluation on China's housing market," Economic Modelling, Elsevier, vol. 46(C), pages 376-383.
    4. Balcombe, Kelvin & Fraser, Iain, 2017. "Do bubbles have an explosive signature in markov switching models?," Economic Modelling, Elsevier, vol. 66(C), pages 81-100.
    5. Chen, Shyh-Wei & Hsu, Chi-Sheng & Xie, Zixong, 2016. "Are there periodically collapsing bubbles in the stock markets? New international evidence," Economic Modelling, Elsevier, vol. 52(PB), pages 442-451.
    6. Chen, Mei-Ping & Lin, Yu-Hui & Tseng, Chun-Yao & Chen, Wen-Yi, 2015. "Bubbles in health care: Evidence from the U.S., U.K., and German stock markets," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 193-205.

  5. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    See citations under working paper version above.
  6. Narayan, Paresh Kumar & Liu, Ruipeng, 2011. "Are shocks to commodity prices persistent?," Applied Energy, Elsevier, vol. 88(1), pages 409-416, January.
    See citations under working paper version above.
  7. Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007. "True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.
    See citations under working paper version above.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 5 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (4) 2007-05-12 2008-09-20 2015-08-13 2015-08-13
  2. NEP-ETS: Econometric Time Series (4) 2007-05-12 2012-01-18 2015-08-13 2015-08-13
  3. NEP-ENE: Energy Economics (1) 2015-08-13
  4. NEP-FMK: Financial Markets (1) 2015-08-13

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Ruipeng Liu should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.