IDEAS home Printed from
   My authors  Follow this author

Fei Chen

Personal Details

First Name:Fei
Middle Name:
Last Name:Chen
RePEc Short-ID:pch2026
[This author has chosen not to make the email address public]
The above email address does not seem to be valid anymore. Please ask Fei Chen to update the entry or send us the correct address or status for this person. Thank you.


School of Economics and Management
Harbin Institute of Technology

Shenzhen, China
RePEc:edi:sehitcn (more details at EDIRC)

Research output

Jump to: Working papers Articles

Working papers

  1. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," Working Papers 12-09, University of Pennsylvania, Wharton School, Weiss Center.


  1. Wei Yang & Fei Chen, 2016. "A simple IID test for autoregressive conditional duration models," Applied Economics Letters, Taylor & Francis Journals, vol. 23(14), pages 1026-1028, September.
  2. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.


Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2012. "A Markov-Switching Multi-Fractal Inter-Trade Duration Model, with Application to U.S. Equities," Working Papers 12-09, University of Pennsylvania, Wharton School, Weiss Center.

    Cited by:

    1. Wen Cao & Clifford Hurvich & Philippe Soulier, 2012. "Drift in Transaction-Level Asset Price Models," Working Papers hal-00756372, HAL.
    2. Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
    3. Peter Akioyamen & Yi Zhou Tang & Hussien Hussien, 2021. "A Hybrid Learning Approach to Detecting Regime Switches in Financial Markets," Papers 2108.05801,
    4. Jorge Pérez-Rodríguez & Emilio Gómez-Déniza & Simón Sosvilla-Rivero, 2019. "“Testing for private information using trade duration models with unobserved market heterogeneity: The case of Banco Popular”," IREA Working Papers 201907, University of Barcelona, Research Institute of Applied Economics, revised Apr 2019.
    5. Bjoern Schulte-Tillmann & Mawuli Segnon & Timo Wiedemann, 2023. "A comparison of high-frequency realized variance measures: Duration- vs. return-based approaches," CQE Working Papers 10523, Center for Quantitative Economics (CQE), University of Muenster.
    6. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604,
    7. Zikes, Filip & Barunik, Jozef & Shenai, Nikhil, 2015. "Modeling and forecasting persistent financial durations," FinMaP-Working Papers 36, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    8. Abdelhakim Aknouche & Christian Francq, 2022. "Stationarity and ergodicity of Markov switching positive conditional mean models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 436-459, May.
    9. Jeffrey R. Black & Pankaj K. Jain & Wei Sun, 2023. "Trade-time clustering," Review of Quantitative Finance and Accounting, Springer, vol. 60(3), pages 1209-1242, April.
    10. Eric M. Aldrich & Indra Heckenbach & Gregory Laughlin, 2014. "A Compound Multifractal Model for High-Frequency Asset Returns," BYU Macroeconomics and Computational Laboratory Working Paper Series 2014-05, Brigham Young University, Department of Economics, BYU Macroeconomics and Computational Laboratory.
    11. Zhicheng Li & Haipeng Xing, 2022. "High-Frequency Quote Volatility Measurement Using a Change-Point Intensity Model," Mathematics, MDPI, vol. 10(4), pages 1-24, February.
    12. Li, Zhicheng & Chen, Xinyun & Xing, Haipeng, 2023. "A multifactor regime-switching model for inter-trade durations in the high-frequency limit order market," Economic Modelling, Elsevier, vol. 118(C).
    13. Yogo Purwono & Irwan Adi Ekaputra & Zaäfri Ananto Husodo, 2018. "Estimation of Dynamic Mixed Hitting Time Model Using Characteristic Function Based Moments," Computational Economics, Springer;Society for Computational Economics, vol. 51(2), pages 295-321, February.
    14. Aldrich, Eric M. & Heckenbach, Indra & Laughlin, Gregory, 2016. "A compound duration model for high-frequency asset returns," Journal of Empirical Finance, Elsevier, vol. 39(PA), pages 105-128.
    15. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2022. "Approximate maximum likelihood for complex structural models," Journal of Econometrics, Elsevier, vol. 231(2), pages 432-456.
    16. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    17. Pérez-Rodríguez, Jorge V. & Gómez-Déniz, Emilio & Sosvilla-Rivero, Simón, 2021. "Testing unobserved market heterogeneity in financial markets: The case of Banco Popular," The Quarterly Review of Economics and Finance, Elsevier, vol. 79(C), pages 151-160.
    18. Kuosmanen, Petri & Nabulsi, Nasib & Vataja, Juuso, 2015. "Financial variables and economic activity in the Nordic countries," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 368-379.
    19. Zhicheng Li & Haipeng Xing & Xinyun Chen, 2019. "A multifactor regime-switching model for inter-trade durations in the limit order market," Papers 1912.00764,
    20. Chiranjit Dutta & Kara Karpman & Sumanta Basu & Nalini Ravishanker, 2023. "Review of Statistical Approaches for Modeling High-Frequency Trading Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 1-48, May.
    21. Augustyniak, Maciej & Dufays, Arnaud, 2018. "Modeling macroeconomic series with regime-switching models characterized by a high-dimensional state space," Economics Letters, Elsevier, vol. 170(C), pages 122-126.
    22. de Bruijn, L.P. & Franses, Ph.H.B.F., 2015. "Stochastic levels and duration dependence in US unemployment," Econometric Institute Research Papers EI2015-20, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    23. Marcin Wątorek & Jarosław Kwapień & Stanisław Drożdż, 2022. "Multifractal Cross-Correlations of Bitcoin and Ether Trading Characteristics in the Post-COVID-19 Time," Future Internet, MDPI, vol. 14(7), pages 1-15, July.
    24. Veronika Czellar & David T. Frazier & Eric Renault, 2020. "Approximate Maximum Likelihood for Complex Structural Models," Papers 2006.10245,
    25. Lux, Thomas, 2013. "Exact solutions for the transient densities of continuous-time Markov switching models: With an application to the poisson multifractal model," Kiel Working Papers 1871, Kiel Institute for the World Economy (IfW Kiel).
    26. Suh, Jong Hwan, 2015. "Forecasting the daily outbreak of topic-level political risk from social media using hidden Markov model-based techniques," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 115-132.
    27. Brownlees Christian T. & Vannucci Marina, 2013. "A Bayesian approach for capturing daily heterogeneity in intra-daily durations time series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 21-46, February.
    28. Farzad Alavi Fard, 2014. "Optimal Bid-Ask Spread in Limit-Order Books under Regime Switching Framework," Review of Economics & Finance, Better Advances Press, Canada, vol. 4, pages 33-48, November.
    29. Czellar, Veronika & Frazier, David T. & Renault, Eric, 2021. "Approximate Maximum Likelihood for Complex Structural Models," The Warwick Economics Research Paper Series (TWERPS) 1337, University of Warwick, Department of Economics.
    30. Marcin Wk{a}torek & Jaros{l}aw Kwapie'n & Stanis{l}aw Dro.zd.z, 2022. "Multifractal cross-correlations of bitcoin and ether trading characteristics in the post-COVID-19 time," Papers 2208.01445,
    31. Renault, Eric & van der Heijden, Thijs & Werker, Bas J.M., 2014. "The dynamic mixed hitting-time model for multiple transaction prices and times," Journal of Econometrics, Elsevier, vol. 180(2), pages 233-250.
    32. Kang, Bo Soo & Ryu, Doojin & Ryu, Doowon, 2014. "Phase-shifting behaviour revisited: An alternative measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 167-173.


  1. Chen, Fei & Diebold, Francis X. & Schorfheide, Frank, 2013. "A Markov-switching multifractal inter-trade duration model, with application to US equities," Journal of Econometrics, Elsevier, vol. 177(2), pages 320-342.
    See citations under working paper version above.Sorry, no citations of articles recorded.

More information

Research fields, statistics, top rankings, if available.


Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 1 paper announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-ECM: Econometrics (1) 2012-05-22
  2. NEP-ETS: Econometric Time Series (1) 2012-05-22
  3. NEP-MST: Market Microstructure (1) 2012-05-22


All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Fei Chen should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.