IDEAS home Printed from https://ideas.repec.org/e/pts54.html
   My authors  Follow this author

Leonidas Tsiaras

Personal Details

First Name:Leonidas
Middle Name:
Last Name:Tsiaras
Suffix:
RePEc Short-ID:pts54

Affiliation

Aston Business School
Aston University

Birmingham, United Kingdom
http://www.abs.aston.ac.uk/
RePEc:edi:bsastuk (more details at EDIRC)

Research output

as
Jump to: Working papers Articles

Working papers

  1. Leonidas Tsiaras, 2010. "Dynamic Models of Exchange Rate Dependence Using Option Prices and Historical Returns," CREATES Research Papers 2010-35, Department of Economics and Business Economics, Aarhus University.
  2. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.

Articles

  1. Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.
  2. Esben Høg & Leonidas Tsiaras, 2011. "Density forecasts of crude‐oil prices using option‐implied and ARCH‐type models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(8), pages 727-754, August.

Citations

Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.

Working papers

  1. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.

    Cited by:

    1. Silvia Muzzioli, 2013. "The Information Content of Option-Based Forecasts of Volatility: Evidence from the Italian Stock Market," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 1-46.
    2. S. Muzzioli, 2010. "Option-based forecasts of volatility: an empirical study in the DAX-index options market," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 561-586.
    3. Silvia Muzzioli, 2013. "The Forecasting Performance of Corridor Implied Volatility in the Italian Market," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 359-386, March.
    4. Silvia Muzzioli, 2011. "Corridor implied volatility and the variance risk premium in the Italian market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0030, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    5. Silvia Muzzioli, 2010. "Towards a volatility index for the Italian stock market," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 10091, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    6. Shan Lu, 2019. "Testing the Predictive Ability of Corridor Implied Volatility Under GARCH Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(2), pages 129-168, June.
    7. Bams, Dennis & Blanchard, Gildas & Lehnert, Thorsten, 2017. "Volatility measures and Value-at-Risk," International Journal of Forecasting, Elsevier, vol. 33(4), pages 848-863.

Articles

  1. Dudley Gilder & Leonidas Tsiaras, 2020. "Volatility forecasts embedded in the prices of crude‐oil options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(7), pages 1127-1159, July.

    Cited by:

    1. Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).

  2. Esben Høg & Leonidas Tsiaras, 2011. "Density forecasts of crude‐oil prices using option‐implied and ARCH‐type models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 31(8), pages 727-754, August.

    Cited by:

    1. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    2. Andres Trujillo-Barrera & Philip Garcia & Mindy L Mallory, 2018. "Short-term price density forecasts in the lean hog futures market," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 45(1), pages 121-142.
    3. Adjemian, Michael K. & Bruno, Valentina G. & Robe, Michel A., 2016. "Forward‐Looking USDA Price Forecasts," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235931, Agricultural and Applied Economics Association.
    4. Peter Christoffersen & Kris Jacobs & Bo Young Chang, 2011. "Forecasting with Option Implied Information," CREATES Research Papers 2011-46, Department of Economics and Business Economics, Aarhus University.
    5. Wang, Yudong & Liu, Li & Ma, Feng & Wu, Chongfeng, 2016. "What the investors need to know about forecasting oil futures return volatility," Energy Economics, Elsevier, vol. 57(C), pages 128-139.
    6. Ricardo Crisostomo & Lorena Couso, 2018. "Financial density forecasts: A comprehensive comparison of risk-neutral and historical schemes," Papers 1801.08007, arXiv.org, revised May 2018.
    7. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2017. "Forecasting the real prices of crude oil using forecast combinations over time-varying parameter models," Energy Economics, Elsevier, vol. 66(C), pages 337-348.
    8. Michael K. Adjemian & Valentina G. Bruno & Michel A. Robe, 2020. "Incorporating Uncertainty into USDA Commodity Price Forecasts," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(2), pages 696-712, March.
    9. Liu, Li & Wang, Yudong & Yang, Li, 2018. "Predictability of crude oil prices: An investor perspective," Energy Economics, Elsevier, vol. 75(C), pages 193-205.

More information

Research fields, statistics, top rankings, if available.

Statistics

Access and download statistics for all items

Co-authorship network on CollEc

NEP Fields

NEP is an announcement service for new working papers, with a weekly report in each of many fields. This author has had 3 papers announced in NEP. These are the fields, ordered by number of announcements, along with their dates. If the author is listed in the directory of specialists for this field, a link is also provided.
  1. NEP-FOR: Forecasting (3) 2009-04-25 2010-09-03 2010-09-03
  2. NEP-ETS: Econometric Time Series (1) 2010-09-03
  3. NEP-FMK: Financial Markets (1) 2010-09-03
  4. NEP-IFN: International Finance (1) 2010-09-03
  5. NEP-MON: Monetary Economics (1) 2010-09-03
  6. NEP-OPM: Open Economy Macroeconomics (1) 2010-09-03

Corrections

All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. For general information on how to correct material on RePEc, see these instructions.

To update listings or check citations waiting for approval, Leonidas Tsiaras should log into the RePEc Author Service.

To make corrections to the bibliographic information of a particular item, find the technical contact on the abstract page of that item. There, details are also given on how to add or correct references and citations.

To link different versions of the same work, where versions have a different title, use this form. Note that if the versions have a very similar title and are in the author's profile, the links will usually be created automatically.

Please note that most corrections can take a couple of weeks to filter through the various RePEc services.

IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.