IDEAS home Printed from https://ideas.repec.org/a/vrs/ceuecj/v4y2017i51p18-39n1002.html
   My bibliography  Save this article

Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options

Author

Listed:
  • Ryszard Kokoszczyński

    (Faculty of Economic Sciences, University of Warsaw, WarsawPoland)

  • Paweł Sakowski

    (Faculty of Economic Sciences, University of Warsaw, WarsawPoland)

  • Robert Ślepaczuk

    (Faculty of Economic Sciences, University of Warsaw, WarsawPoland)

Abstract

In this study, we analyse the performance of option pricing models using 5-minutes transactional data for the Japanese Nikkei 225 index options. We compare 6 different option pricing models: the Black (1976) model with different assumptions about the volatility process (realized volatility with and without smoothing, historical volatility and implied volatility), the stochastic volatility model of Heston (1993) and the GARCH(1,1) model. To assess the model performance, we use median absolute percentage error based on differences between theoretical and transactional options prices. We present our results with respect to 5 classes of option moneyness, 5 classes of option time to maturity and 2 option types (calls and puts). The Black model with implied volatility (BIV) comes as the best and the GARCH(1,1) as the worst one. For both call and put options, we observe the clear relation between average pricing errors and option moneyness: high error values for deep OTM options and the best fit for deep ITM options. Pricing errors also depend on time to maturity, although this relationship depend on option moneyness. For low value options (deep OTM and OTM), we obtained lower errors for longer maturities. On the other hand, for high value options (ITM and deep ITM) pricing errors are lower for short times to maturity. We obtained similar average pricing errors for call and put options. Moreover, we do not see any advantage of much complex and time-consuming models. Additionally, we describe liquidity of the Nikkei225 option pricing market and try to compare the results we obtain here with a detailed study for Polish emerging option market (Kokoszczyński et al. 2010b).

Suggested Citation

  • Ryszard Kokoszczyński & Paweł Sakowski & Robert Ślepaczuk, 2017. "Which Option Pricing Model Is the Best? HF Data for Nikkei 225 Index Options," Central European Economic Journal, Sciendo, vol. 4(51), pages 18-39.
  • Handle: RePEc:vrs:ceuecj:v:4:y:2017:i:51:p:18-39:n:1002
    DOI: 10.1515/ceej-2018-0010
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/ceej-2018-0010
    Download Restriction: no

    File URL: https://libkey.io/10.1515/ceej-2018-0010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Campbell, John Y. & Hentschel, Ludger, 1992. "No news is good news *1: An asymmetric model of changing volatility in stock returns," Journal of Financial Economics, Elsevier, vol. 31(3), pages 281-318, June.
    2. V. L. Martin & G. M. Martin & G. C. Lim, 2005. "Parametric pricing of higher order moments in S&P500 options," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 377-404.
    3. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    4. Tsiaras, Leonidas, 2009. "The Forecast Performance of Competing Implied Volatility Measures: The Case of Individual Stocks," Finance Research Group Working Papers F-2009-02, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
    7. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy1," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237, October.
    8. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    9. Yao, Jingtao & Li, Yili & Tan, Chew Lim, 2000. "Option price forecasting using neural networks," Omega, Elsevier, vol. 28(4), pages 455-466, August.
    10. Robert Ślepaczuk & Grzegorz Zakrzewski, 2009. "High-Frequency and Model-Free Volatility Estimators," Working Papers 2009-13, Faculty of Economic Sciences, University of Warsaw.
    11. Patrick Dennis & Stewart Mayhew, 2009. "Microstructural biases in empirical tests of option pricing models," Review of Derivatives Research, Springer, vol. 12(3), pages 169-191, October.
    12. repec:bla:jfinan:v:59:y:2004:i:2:p:755-793 is not listed on IDEAS
    13. René Garcia & Èric Renault, 1998. "A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 153-161, April.
    14. Eric Zivot, 2008. "Practical Issues in the Analysis of Univariate GARCH Models," Working Papers UWEC-2008-03-FC, University of Washington, Department of Economics.
    15. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    16. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, February.
    17. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    18. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    19. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    20. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    21. Brandt, Michael W. & Wu, Tao, 2002. "Cross-sectional tests of deterministic volatility functions," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 525-550, December.
    22. Robert JARROW & Andrew RUDD, 2008. "Approximate Option Valuation For Arbitrary Stochastic Processes," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 1, pages 9-31, World Scientific Publishing Co. Pte. Ltd..
    23. Sovan Mitra, 2009. "A Review of Volatility and Option Pricing," Papers 0904.1292, arXiv.org.
    24. David S. Bates, 1995. "Testing Option Pricing Models," NBER Working Papers 5129, National Bureau of Economic Research, Inc.
    25. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    26. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
    27. Eva Ferreira & Mónica Gago & Angel León & Gonzalo Rubio, 2005. "An empirical comparison of the performance of alternative option pricing models," Investigaciones Economicas, Fundación SEPI, vol. 29(3), pages 483-523, September.
    28. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    29. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    30. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    31. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    32. Yunbi An & Wulin Suo, 2009. "An Empirical Comparison of Option‐Pricing Models in Hedging Exotic Options," Financial Management, Financial Management Association International, vol. 38(4), pages 889-914, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maciej Wysocki & Robert Ślepaczuk, 2020. "Artificial Neural Networks Performance in WIG20 Index Options Pricing," Working Papers 2020-19, Faculty of Economic Sciences, University of Warsaw.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    2. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    3. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    4. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    5. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    8. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    9. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    10. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    11. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    12. Sol Kim, 2021. "Portfolio of Volatility Smiles versus Volatility Surface: Implications for pricing and hedging options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1154-1176, July.
    13. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    14. Ryszard Kokoszczyński & Natalia Nehrebecka & Paweł Sakowski & Paweł Strawiński & Robert Ślepaczuk, 2010. "Option Pricing Models with HF Data – a Comparative Study. The Properties of Black Model with Different Volatility Measures," Working Papers 2010-03, Faculty of Economic Sciences, University of Warsaw.
    15. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    16. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    17. Kin-Yip Ho & Albert K Tsui, 2008. "Volatility Dynamics in Foreign Exchange Rates : Further Evidence from the Malaysian Ringgit and Singapore Dollar," Finance Working Papers 22571, East Asian Bureau of Economic Research.
    18. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," The Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
    19. Gabriele Fiorentini & Angel León & Gonzalo Rubio, "undated". "Short-term options with stochastic volatility: Estimation and empirical performance," Studies on the Spanish Economy 02, FEDEA.
    20. Hilliard, Jitka, 2013. "Testing Greeks and price changes in the S&P 500 options and futures contract: A regression analysis," International Review of Financial Analysis, Elsevier, vol. 26(C), pages 51-58.

    More about this item

    Keywords

    Option pricing models; high-frequency data; realized volatility; implied volatility; stochastic volatility; emerging markets;
    All these keywords.

    JEL classification:

    • O52 - Economic Development, Innovation, Technological Change, and Growth - - Economywide Country Studies - - - Europe
    • P33 - Political Economy and Comparative Economic Systems - - Socialist Institutions and Their Transitions - - - International Trade, Finance, Investment, Relations, and Aid
    • R12 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Size and Spatial Distributions of Regional Economic Activity; Interregional Trade (economic geography)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:ceuecj:v:4:y:2017:i:51:p:18-39:n:1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.