IDEAS home Printed from https://ideas.repec.org/a/zib/zjmerd/v41y2018i4p17-21.html
   My bibliography  Save this article

Analyzing The Effect Of Heated Wall Surface Temperatures Combustion Chamber Deposit Formation

Author

Listed:
  • Van Viet Pham

    (Vietnam Maritime University, Haiphong city, Vietnam)

Abstract

One of the most important studies on using diesel fuel is the basic study of combustion chamber deposits in engines. These studies were conducted to investigate the effects of deposits on the engine and how deposits are formed in engines. Deposits in the combustion chamber are proven to be formed through three different stages: (1) the condensation of components in incomplete combustion process on the combustion chamber walls; (2) the interaction of unburned fuel droplets; (3) fuel flow (intake valve and nozzle). This paper aim is establishing a correlation between deposits formation on the wall surface when fuel droplets interact with heated wall surfaces and surface temperatures. The changes of heated surface temperature impacted on the interaction of fuel elements with the surface, the evaporation and the dryness or wetness of fuel. In addition, in this study, zones of temperature with greater or lesser deposition formation were also identified. This helps to clarify the complex fluctuations in the deposits combustion chamber in real diesel engines.

Suggested Citation

  • Van Viet Pham, 2018. "Analyzing The Effect Of Heated Wall Surface Temperatures Combustion Chamber Deposit Formation," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(4), pages 17-21, November.
  • Handle: RePEc:zib:zjmerd:v:41:y:2018:i:4:p:17-21
    DOI: 10.26480/jmerd.04.2018.17.21
    as

    Download full text from publisher

    File URL: https://jmerd.org.my/download/3398/
    Download Restriction: no

    File URL: https://libkey.io/10.26480/jmerd.04.2018.17.21?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    2. Moon, Seoksu & Li, Tianyun & Sato, Kiyotaka & Yokohata, Hideaki, 2017. "Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors," Energy, Elsevier, vol. 127(C), pages 89-100.
    3. Aldhaidhawi, Mohanad & Chiriac, Radu & Badescu, Viorel, 2017. "Ignition delay, combustion and emission characteristics of Diesel engine fueled with rapeseed biodiesel – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 178-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diep Thi Ngoc Hoang & Thu Thi Anh Do, 2019. "Integration Of Teamwork Skills In Teaching In Order To Meet The Learning Outcomes In The Cdio Syllabus: Application To Technology And Engineering," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 1-5, March.
    2. Xuan Phuong Nguyen, 2019. "The Bus Transportation Issue And People Satisfaction With Public Transport In Ho Chi Minh City ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 10-16, January.
    3. Nguyen Hoang Phuong, 2019. "Current Status And Solutions To Reduce Logistics Costs In Vietnam. Abstract: Currently, Logistics is a tremendous economic resource for each country. Logistics knows as an economic activity organized ," Malaysian E Commerce Journal (MECJ), Zibeline International Publishing, vol. 3(3), pages 01-04, August.
    4. Van Viet Pham, 2019. "Correlation Of Overall Heat Transfer Coefficient In The Three Zones Of Wire And Tube Condenser," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 87-97, March.
    5. Van Viet Pham & Duc Thiep Cao, 2019. "A Brief Review Of Technology Solutions On Fuel Injection System Of Diesel Engine To Increase The Power And Reduce Environmental Pollution," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 1-9, January.
    6. Van Hai Nguyen & Duc Thiep Cao & Thi Hien Do, 2019. "Research And Calculation Of The Biogas Fuel Supply System For A Small Marine Diesel Engine," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 64-70, January.
    7. Tien Quoc Le & Diep Thi Ngoc Hoang & Thu Thi Anh Do, 2019. "Learning Outcomes For Training Program By Cdio Approach Applied To Mechanical Industry 4.0," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 50-55, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:zib:zjmerd:4jmerd2018-17-21 is not listed on IDEAS
    2. Xuan Phuong Nguyen, 2019. "The Bus Transportation Issue And People Satisfaction With Public Transport In Ho Chi Minh City ," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 10-16, January.
    3. repec:zib:zjmerd:4jmerd2018-116-121 is not listed on IDEAS
    4. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan & Yao, Baofeng, 2023. "Dynamic response assessment and multi-objective optimization of organic Rankine cycle (ORC) under vehicle driving cycle conditions," Energy, Elsevier, vol. 263(PA).
    5. El-Shafay, A.S. & Ağbulut, Ümit & Attia, El-Awady & Touileb, Kamel Lounes & Gad, M.S., 2023. "Waste to energy: Production of poultry-based fat biodiesel and experimental assessment of its usability on engine behaviors," Energy, Elsevier, vol. 262(PB).
    6. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    7. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar & Amir Reza Razmi, 2020. "4E Analyses of a Hybrid Waste-Driven CHP–ORC Plant with Flue Gas Condensation," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    8. Piotr Łagowski & Grzegorz Wcisło & Dariusz Kurczyński, 2022. "Comparison of the Combustion Process Parameters in a Diesel Engine Powered by Second-Generation Biodiesel Compared to the First-Generation Biodiesel," Energies, MDPI, vol. 15(18), pages 1-21, September.
    9. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Xia, Jiaxi & Wang, Jiangfeng & Lou, Juwei & Hu, Jianjun & Yao, Sen, 2023. "Thermodynamic, economic, environmental analysis and multi-objective optimization of a novel combined cooling and power system for cascade utilization of engine waste heat," Energy, Elsevier, vol. 277(C).
    11. Michael Chukwuemeka Ekwonu & Mirae Kim & Binqi Chen & Muhammad Tauseef Nasir & Kyung Chun Kim, 2023. "Dynamic Simulation of Partial Load Operation of an Organic Rankine Cycle with Two Parallel Expanders," Energies, MDPI, vol. 16(1), pages 1-18, January.
    12. Tang, Yujun & Feng, Jinfeng & Wang, Dawei & Zhu, Sipeng & Bai, Shuzhan & Li, Guoxiang, 2024. "Multi-mode operation of a novel dual-pressure steam rankine cycle system recovering multi-grade waste heat from a marine two-stroke engine equipped with the high-pressure exhaust gas recirculation sys," Energy, Elsevier, vol. 301(C).
    13. Jin, Yunli & Gao, Naiping & Zhu, Tong, 2022. "Effect of resistive load characteristics on the performance of Organic Rankine cycle (ORC)," Energy, Elsevier, vol. 246(C).
    14. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    15. Tayari, Sara & Abedi, Reza & Rahi, Abbas, 2020. "Comparative assessment of engine performance and emissions fueled with three different biodiesel generations," Renewable Energy, Elsevier, vol. 147(P1), pages 1058-1069.
    16. Hoang, Anh Tuan & Tabatabaei, Meisam & Aghbashlo, Mortaza & Carlucci, Antonio Paolo & Ölçer, Aykut I. & Le, Anh Tuan & Ghassemi, Abbas, 2021. "Rice bran oil-based biodiesel as a promising renewable fuel alternative to petrodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    17. Grzegorz Ligus & Barbara Wasilewska & Marek Krok & Laura Pałys-Żyta, 2024. "Influence of the Spray Swirl Flow on the Gas–Liquid Interfacial Area Morphology: Multiparametric Qualitative Analysis," Energies, MDPI, vol. 18(1), pages 1-17, December.
    18. Ge, Jun Cong & Wu, Guirong & Yoo, Byeong-O & Choi, Nag Jung, 2022. "Effect of injection timing on combustion, emission and particle morphology of an old diesel engine fueled with ternary blends at low idling operations," Energy, Elsevier, vol. 253(C).
    19. Jie Ren & Zuoqin Qian & Xinyu Wang & Weilong Huang & Baolin Wang, 2024. "Investigation of a Biomass-Driven Cogeneration System Integrated with an Externally Fired Gas Turbine, Organic Rankine Cycle, and Absorption Refrigeration Cycle: Thermodynamic and Exergoeconomic Analy," Sustainability, MDPI, vol. 16(11), pages 1-35, May.
    20. Quoc Viet Pham & Van Hai Nguyen, 2019. "Proposal Of Some Advanced Technology Methods In The Assembly Of The Shaft System - Main Engine On The Small Cargo Ships," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 81-84, February.
    21. Imran, Muhammad & Pili, Roberto & Usman, Muhammad & Haglind, Fredrik, 2020. "Dynamic modeling and control strategies of organic Rankine cycle systems: Methods and challenges," Applied Energy, Elsevier, vol. 276(C).
    22. Tran Thi Thanh Van & Tran Ngoc Thanh & Phạm Ngoc Vuong & Nguyen Duong Nam, 2019. "Calculation Of Cylindrical Products Made Of Composite Materials Using Wrap Technology," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(2), pages 76-78, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zjmerd:v:41:y:2018:i:4:p:17-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing The email address of this maintainer does not seem to be valid anymore. Please ask Zibeline International Publishing to update the entry or send us the correct address (email available below). General contact details of provider: https://jmerd.org.my/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.