IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v127y2017icp89-100.html
   My bibliography  Save this article

Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors

Author

Listed:
  • Moon, Seoksu
  • Li, Tianyun
  • Sato, Kiyotaka
  • Yokohata, Hideaki

Abstract

Understanding the governing parameters and dynamics of turbulent spray atomization is essential for the advancement of fuel injection technologies, but no concrete understandings have been derived previously. The current study investigates the governing parameters and dynamics of turbulent spray atomization by experimental observations of near-nozzle spray phenomena using an X-ray imaging technique. The effects of critical injection parameters such as fuel property, injection pressure and ambient density on near-nozzle liquid feature size and velocity distributions were extensively studied using three injection nozzles having different levels of initial flow turbulence and dispersion. Based on the results, the governing parameters and dynamics of turbulent spray atomization and the issues on the advanced fuel injection control of modern engines were thoroughly discussed. The results showed that fuel and injection pressure effects on spray atomization became insignificant from a critical Weber number which decreased upon the increase in initial flow turbulence and dispersion. The increase in ambient density increased the resultant droplet size at downstream due to the faster deceleration of spray which brought the atomization termination location closer to the nozzle exit. The spray atomization was terminated at the location of ca. 72% exit velocity regardless of the injection condition.

Suggested Citation

  • Moon, Seoksu & Li, Tianyun & Sato, Kiyotaka & Yokohata, Hideaki, 2017. "Governing parameters and dynamics of turbulent spray atomization from modern GDI injectors," Energy, Elsevier, vol. 127(C), pages 89-100.
  • Handle: RePEc:eee:energy:v:127:y:2017:i:c:p:89-100
    DOI: 10.1016/j.energy.2017.03.099
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217304826
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.03.099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Moon, Seoksu & Huang, Weidi & Li, Zhilong & Wang, Jin, 2016. "End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy," Applied Energy, Elsevier, vol. 179(C), pages 7-16.
    2. Battistoni, Michele & Grimaldi, Carlo Nazareno, 2012. "Numerical analysis of injector flow and spray characteristics from diesel injectors using fossil and biodiesel fuels," Applied Energy, Elsevier, vol. 97(C), pages 656-666.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. repec:zib:zjmerd:4jmerd2018-17-21 is not listed on IDEAS
    2. Lee, Seung Yeob & Lee, Ho Jun & Kang, Yong Tae & Chung, Jin Taek, 2018. "Effects of injection strategies on the flow and fuel behavior characteristics in port dual injection engine," Energy, Elsevier, vol. 165(PA), pages 666-676.
    3. Zhang, Qing & Gao, Ya & Chu, Miaoqi & Chen, Pice & Zhang, Qingteng & Wang, Jin, 2023. "Enhanced energy conversion efficiency promoted by cavitation in gasoline direct injection," Energy, Elsevier, vol. 265(C).
    4. Van Viet Pham, 2018. "Analyzing The Effect Of Heated Wall Surface Temperatures Combustion Chamber Deposit Formation," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 41(4), pages 17-21, November.
    5. Chunlei Liu & Qun Zheng & Qi Wang & Aqiang Lin & Yuting Jiang & Mingcong Luo, 2019. "Sensitivity Analysis of Multistage Compressor Characteristics Under the Spray Atomization Effect Using a CFD Model," Energies, MDPI, vol. 12(2), pages 1-30, January.
    6. Song, Jingeun & Lee, Ziyoung & Song, Jaecheon & Park, Sungwook, 2018. "Effects of injection strategy and coolant temperature on hydrocarbon and particulate emissions from a gasoline direct injection engine with high pressure injection up to 50 MPa," Energy, Elsevier, vol. 164(C), pages 512-522.
    7. Waldemar Fedak & Roman Ulbrich & Grzegorz Ligus & Marek Wasilewski & Szymon Kołodziej & Barbara Wasilewska & Marek Ochowiak & Sylwia Włodarczak & Andżelika Krupińska & Ivan Pavlenko, 2021. "Influence of Spray Nozzle Operating Parameters on the Fogging Process Implemented to Prevent the Spread of SARS-CoV-2 Virus," Energies, MDPI, vol. 14(14), pages 1-19, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Djati Wibowo Djamari & Muhammad Idris & Permana Andi Paristiawan & Muhammad Mujtaba Abbas & Olusegun David Samuel & Manzoore Elahi M. Soudagar & Safarudin Gazali Herawan & Davannendran Chandran & Abdu, 2022. "Diesel Spray: Development of Spray in Diesel Engine," Sustainability, MDPI, vol. 14(23), pages 1-22, November.
    2. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    3. M.H.H. Ishak & Farzad Ismail & Sharzali Che Mat & M.Z. Abdullah & M.S. Abdul Aziz & M.Y. Idroas, 2019. "Numerical Analysis of Nozzle Flow and Spray Characteristics from Different Nozzles Using Diesel and Biofuel Blends," Energies, MDPI, vol. 12(2), pages 1-25, January.
    4. Grima-Olmedo, C. & Ramírez-Gómez, Á. & Alcalde-Cartagena, R., 2014. "Energetic performance of landfill and digester biogas in a domestic cooker," Applied Energy, Elsevier, vol. 134(C), pages 301-308.
    5. Haseeb Yaqoob & Yew Heng Teoh & Farooq Sher & Muhammad Umer Farooq & Muhammad Ahmad Jamil & Zareena Kausar & Noor Us Sabah & Muhammad Faizan Shah & Hafiz Zia Ur Rehman & Atiq Ur Rehman, 2021. "Potential of Waste Cooking Oil Biodiesel as Renewable Fuel in Combustion Engines: A Review," Energies, MDPI, vol. 14(9), pages 1-20, April.
    6. Konstantinos Kolovos & Phoevos Koukouvinis & Robert M. McDavid & Manolis Gavaises, 2021. "Transient Cavitation and Friction-Induced Heating Effects of Diesel Fuel during the Needle Valve Early Opening Stages for Discharge Pressures up to 450 MPa," Energies, MDPI, vol. 14(10), pages 1-18, May.
    7. Xinda Zhu & Manu Mannazhi & Natascia Palazzo & Per-Erik Bengtsson & Öivind Andersson, 2020. "High-Speed Imaging of Spray Formation and Combustion in an Optical Engine: Effects of Injector Aging and TPGME as a Fuel Additive," Energies, MDPI, vol. 13(12), pages 1-26, June.
    8. Hongzhan Xie & Lanbo Song & Yizhi Xie & Dong Pi & Chunyu Shao & Qizhao Lin, 2015. "An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber," Energies, MDPI, vol. 8(6), pages 1-21, June.
    9. Muteeb ul Haq & Ali Turab Jafry & Muhammad Salman Abbasi & Muhammad Jawad & Saad Ahmad & Taqi Ahmad Cheema & Naseem Abbas, 2022. "Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions," Energies, MDPI, vol. 15(20), pages 1-18, October.
    10. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    11. Wei, Yunpeng & Zhang, Hanwen & Fan, Liyun & Gu, Yuanqi & Leng, Xianyin & Deng, Yicheng & He, Zhixia, 2022. "Experimental study into the effects of stability between multiple injections on the internal flow and near field spray dynamics of a diesel nozzle," Energy, Elsevier, vol. 248(C).
    12. de la Garza, Oscar A. & Martínez-Martínez, S. & Avulapati, Madan Mohan & Pos, Radboud & Megaritis, Thanos & Ganippa, Lionel, 2021. "Biofuels and its spray interactions under pilot-main injection strategy," Energy, Elsevier, vol. 219(C).
    13. Michael Frank & Dimitris Drikakis, 2018. "Draining Water from Aircraft Fuel Using Nitrogen Enriched Air," Energies, MDPI, vol. 11(4), pages 1-16, April.
    14. Luka Lešnik & Breda Kegl & Eloísa Torres-Jiménez & Fernando Cruz-Peragón & Carmen Mata & Ignacijo Biluš, 2021. "Effect of the In-Cylinder Back Pressure on the Injection Process and Fuel Flow Characteristics in a Common-Rail Diesel Injector Using GTL Fuel," Energies, MDPI, vol. 14(2), pages 1-21, January.
    15. Zhang, Ji & Jing, Wei & Roberts, William L. & Fang, Tiegang, 2013. "Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber," Applied Energy, Elsevier, vol. 107(C), pages 52-65.
    16. Agarwal, Avinash Kumar & Som, Sibendu & Shukla, Pravesh Chandra & Goyal, Harsh & Longman, Douglas, 2015. "In-nozzle flow and spray characteristics for mineral diesel, Karanja, and Jatropha biodiesels," Applied Energy, Elsevier, vol. 156(C), pages 138-148.
    17. Zhang, Jibao & Zhang, Xin & Wang, Tao & Hou, Xiaosen, 2019. "A numerical study on jet characteristics under different supercritical conditions for engine applications," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Mohan, Balaji & Yang, Wenming & Yu, Wenbin, 2014. "Effect of internal nozzle flow and thermo-physical properties on spray characteristics of methyl esters," Applied Energy, Elsevier, vol. 129(C), pages 123-134.
    19. Alex Gander & Dan Sykes & Raúl Payri & Guillaume de Sercey & Dave Kennaird & Martin Gold & Richard J. Pearson & Cyril Crua, 2021. "High-Speed Infrared Measurement of Injector Tip Temperature during Diesel Engine Operation," Energies, MDPI, vol. 14(15), pages 1-19, July.
    20. Ludovic Lamoot & Brady Manescau & Khaled Chetehouna & Nicolas Gascoin, 2021. "Review on the Effect of the Phenomenon of Cavitation in Combustion Efficiency and the Role of Biofuels as a Solution against Cavitation," Energies, MDPI, vol. 14(21), pages 1-35, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:127:y:2017:i:c:p:89-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.