IDEAS home Printed from https://ideas.repec.org/a/zag/zirebs/v23y2020i1p19-33.html
   My bibliography  Save this article

Weather-Induced Moods and Stock-Return Autocorrelation

Author

Listed:
  • Anya Khanthavit

    (Faculty of Commerce and Accountancy, Thammasat University, Bangkok, Thailand.)

Abstract

TMoods affect investors’ attention, memory, and capacity to process information. Inattentive investors delay the price adjustment process, thus leading to a positive autocorrelation of asset returns. In this study, I investigate the relationship between weather-induced moods and stock-return autocorrelation in the Stock Exchange of Thailand from January 2, 1991, to December 29, 2017. Only good moods contribute significantly to return autocorrelation. JEL Classification: G40, G41

Suggested Citation

  • Anya Khanthavit, 2020. "Weather-Induced Moods and Stock-Return Autocorrelation," Zagreb International Review of Economics and Business, Faculty of Economics and Business, University of Zagreb, vol. 23(1), pages 19-33, May.
  • Handle: RePEc:zag:zirebs:v:23:y:2020:i:1:p:19-33
    DOI: 10.2478/zireb-2020-0002
    as

    Download full text from publisher

    File URL: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=346041
    Download Restriction: Abstract only available on-line

    File URL: https://libkey.io/10.2478/zireb-2020-0002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Malcolm Baker & Jeffrey Wurgler, 2007. "Investor Sentiment in the Stock Market," Journal of Economic Perspectives, American Economic Association, vol. 21(2), pages 129-152, Spring.
    2. Vincent Bogousslavsky, 2016. "Infrequent Rebalancing, Return Autocorrelation, and Seasonality," Journal of Finance, American Finance Association, vol. 71(6), pages 2967-3006, December.
    3. Ed Dehaan & Joshua Madsen & Joseph D. Piotroski, 2017. "Do Weather‐Induced Moods Affect the Processing of Earnings News?," Journal of Accounting Research, Wiley Blackwell, vol. 55(3), pages 509-550, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bradrania, Reza & Gao, Ya, 2024. "Lottery demand, weather and the cross-section of stock returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    2. Renault, Thomas, 2017. "Intraday online investor sentiment and return patterns in the U.S. stock market," Journal of Banking & Finance, Elsevier, vol. 84(C), pages 25-40.
    3. Chen, Xiao & Guo, Gangxing, 2024. "Air pollution and online lender behavior: Evidence from Chinese peer-to-peer lending," Journal of Behavioral and Experimental Finance, Elsevier, vol. 42(C).
    4. Nguyen, Hung T. & Pham, Mia Hang, 2021. "Air pollution and behavioral biases: Evidence from stock market anomalies," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    5. Xu, Liao & Zhang, Xuan & Zhao, Jing, 2023. "Limited investor attention and biased reactions to information: Evidence from the COVID-19 pandemic," Journal of Financial Markets, Elsevier, vol. 62(C).
    6. Xu, Hai-Chuan & Zhou, Wei-Xing, 2018. "A weekly sentiment index and the cross-section of stock returns," Finance Research Letters, Elsevier, vol. 27(C), pages 135-139.
    7. Kelley Bergsma & Andy Fodor & Vijay Singal & Jitendra Tayal, 2020. "Option trading after the opening bell and intraday stock return predictability," Financial Management, Financial Management Association International, vol. 49(3), pages 769-804, September.
    8. Gould, John & Yang, Joey W. & Singh, Ranjodh & Yeo, Ben, 2023. "The seasonality of lottery-like stock returns," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 383-400.
    9. Hirshleifer, David & Jiang, Danling & DiGiovanni, Yuting Meng, 2020. "Mood beta and seasonalities in stock returns," Journal of Financial Economics, Elsevier, vol. 137(1), pages 272-295.
    10. David Hirshleifer & Danling Jiang, 2010. "A Financing-Based Misvaluation Factor and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3401-3436.
    11. Lepori, Gabriele M., 2015. "Investor mood and demand for stocks: Evidence from popular TV series finales," Journal of Economic Psychology, Elsevier, vol. 48(C), pages 33-47.
    12. Wang, Peipei & Wen, Yuanji & Singh, Harminder, 2017. "The high-volume return premium: Does it exist in the Chinese stock market?," Pacific-Basin Finance Journal, Elsevier, vol. 46(PB), pages 323-336.
    13. Caginalp, Gunduz & DeSantis, Mark, 2017. "Does price efficiency increase with trading volume? Evidence of nonlinearity and power laws in ETFs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 436-452.
    14. Haddou, Samira, 2024. "Determinants of CDS in core and peripheral European countries: A comparative study during crisis and calm periods," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
    15. Constantinos Antoniou & John A. Doukas & Avanidhar Subrahmanyam, 2016. "Investor Sentiment, Beta, and the Cost of Equity Capital," Management Science, INFORMS, vol. 62(2), pages 347-367, February.
    16. Papapostolou, Nikos C. & Pouliasis, Panos K. & Nomikos, Nikos K. & Kyriakou, Ioannis, 2016. "Shipping investor sentiment and international stock return predictability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 81-94.
    17. Kubin, Ingrid & Zörner, Thomas O. & Gardini, Laura & Commendatore, Pasquale, 2019. "A credit cycle model with market sentiments," Structural Change and Economic Dynamics, Elsevier, vol. 50(C), pages 159-174.
    18. Ben-Rephael, Azi & Kandel, Shmuel & Wohl, Avi, 2012. "Measuring investor sentiment with mutual fund flows," Journal of Financial Economics, Elsevier, vol. 104(2), pages 363-382.
    19. Yousaf, Imran & Youssef, Manel & Goodell, John W., 2022. "Quantile connectedness between sentiment and financial markets: Evidence from the S&P 500 twitter sentiment index," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Li, Xiao-Ming, 2017. "New evidence on economic policy uncertainty and equity premium," Pacific-Basin Finance Journal, Elsevier, vol. 46(PA), pages 41-56.

    More about this item

    Keywords

    iinformation processing; moods; limited attention; return autocorrelation; weather effects;
    All these keywords.

    JEL classification:

    • G40 - Financial Economics - - Behavioral Finance - - - General
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zag:zirebs:v:23:y:2020:i:1:p:19-33. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jurica Šimurina (email available below). General contact details of provider: https://edirc.repec.org/data/fefzghr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.