Expansion Formulas For European Quanto Options In A Local Volatility Fx-Libor Model
Author
Abstract
Suggested Citation
DOI: 10.1142/S0219024918500176
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- H. Berestycki & J. Busca & I. Florent, 2002. "Asymptotics and calibration of local volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 61-69.
- Patrick Hagan & Diana Woodward, 1999. "Equivalent Black volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 147-157.
- E. Benhamou & E. Gobet & M. Miri, 2012. "Analytical formulas for a local volatility model with stochastic rates," Quantitative Finance, Taylor & Francis Journals, vol. 12(2), pages 185-198, September.
- Leif Andersen & Jesper Andreasen, 2000. "Volatility skews and extensions of the Libor market model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(1), pages 1-32.
- Christoffersen, Peter & Jacobs, Kris, 2004.
"The importance of the loss function in option valuation,"
Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
- Peter Christoffersen & Kris Jacobs, 2003. "The Importance of the Loss Function in Option Valuation," CIRANO Working Papers 2003s-52, CIRANO.
- Hull, John & Suo, Wulin, 2002. "A Methodology for Assessing Model Risk and its Application to the Implied Volatility Function Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(2), pages 297-318, June.
- E. Benhamou & E. Gobet & M. Miri, 2009.
"Smart expansion and fast calibration for jump diffusions,"
Finance and Stochastics, Springer, vol. 13(4), pages 563-589, September.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2007. "Smart expansion and fast calibration for jump diffusion," Papers 0712.3485, arXiv.org, revised Sep 2008.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2009. "Smart expansion and fast calibration for jump diffusion," Post-Print hal-00200395, HAL.
- Erik Schlögl, 2002.
"A multicurrency extension of the lognormal interest rate Market Models,"
Finance and Stochastics, Springer, vol. 6(2), pages 173-196.
- Erik Schlögl, 1999. "A Multicurrency Extension of the Lognormal Interest Rate Market Models," Research Paper Series 20, Quantitative Finance Research Centre, University of Technology, Sydney.
- Emmanuel Gobet & Julien Hok, 2014. "Expansion Formulas For Bivariate Payoffs With Application To Best-Of Options On Equity And Inflation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 17(02), pages 1-32.
- Boenkost, Wolfram & Schmidt, Wolfgang M., 2003. "Notes on convexity and quanto adjustments for interest rates and related options," Frankfurt School - Working Paper Series 47, Frankfurt School of Finance and Management.
- Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
- Jacinto Marabel Romo, 2012. "The Quanto Adjustment and the Smile," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 32(9), pages 877-908, September.
- Paolo Foschi & Stefano Pagliarani & Andrea Pascucci, 2011. "Black-Scholes formulae for Asian options in local volatility models," Quaderni di Dipartimento 7, Department of Statistics, University of Bologna.
- Emanuel Derman & Iraj Kani, 1998. "Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 61-110.
- E. Benhamou & E. Gobet & M. Miri, 2010.
"Expansion Formulas For European Options In A Local Volatility Model,"
International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(04), pages 603-634.
- Eric Benhamou & Emmanuel Gobet & Mohammed Miri, 2010. "Expansion formulas for European options in a local volatility model," Post-Print hal-00325939, HAL.
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Akihiko Takahashi, 2015. "Asymptotic Expansion Approach in Finance," CARF F-Series CARF-F-356, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2015.
- Naoto Kunitomo & Akihiko Takahashi, 2004. "Applications of the Asymptotic Expansion Approach based on Malliavin-Watanabe Calculus in Financial Problems," World Scientific Book Chapters, in: Jiro Akahori & Shigeyoshi Ogawa & Shinzo Watanabe (ed.), Stochastic Processes And Applications To Mathematical Finance, chapter 10, pages 195-232, World Scientific Publishing Co. Pte. Ltd..
- Pagliarani, Stefano & Pascucci, Andrea, 2011. "Analytical approximation of the transition density in a local volatility model," MPRA Paper 31107, University Library of Munich, Germany.
- Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
- Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
- Cetin, Umut & Hok, Julien, 2024. "Speeding up the Euler scheme for killed diffusions," LSE Research Online Documents on Economics 120789, London School of Economics and Political Science, LSE Library.
- George Hong, 2020. "Skewing Quanto with Simplicity," Papers 2009.02566, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Julien Hok & Philip Ngare & Antonis Papapantoleon, 2018. "Expansion formulas for European quanto options in a local volatility FX-LIBOR model," Papers 1801.01205, arXiv.org, revised Apr 2018.
- Julien Hok & Shih-Hau Tan, 2019. "Calibration of local volatility model with stochastic interest rates by efficient numerical PDE methods," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(2), pages 609-637, December.
- Julien Hok & Sergei Kucherenko, 2021. "Pricing and Risk Analysis in Hyperbolic Local Volatility Model with Quasi Monte Carlo," Papers 2106.08421, arXiv.org.
- Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
- Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
- Umut Çetin & Julien Hok, 2024. "Speeding up the Euler scheme for killed diffusions," Finance and Stochastics, Springer, vol. 28(3), pages 663-707, July.
- Emmanuel Gobet & Ali Suleiman, 2013. "New approximations in local volatility models," Post-Print hal-00523369, HAL.
- Gobet, Emmanuel & Miri, Mohammed, 2014. "Weak approximation of averaged diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 475-504.
- Cetin, Umut & Hok, Julien, 2024. "Speeding up the Euler scheme for killed diffusions," LSE Research Online Documents on Economics 120789, London School of Economics and Political Science, LSE Library.
- Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
- H. Yin & Y. Wang & L. Qi, 2009. "Shape-Preserving Interpolation and Smoothing for Options Market Implied Volatility," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 243-266, July.
- David Heath & Eckhard Platen, 2006.
"Local volatility function models under a benchmark approach,"
Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 197-206.
- David Heath & Eckhard Platen, 2004. "Local Volatility Function Models under a Benchmark Approach," Research Paper Series 124, Quantitative Finance Research Centre, University of Technology, Sydney.
- Stefano, Pagliarani & Pascucci, Andrea & Candia, Riga, 2011. "Expansion formulae for local Lévy models," MPRA Paper 34571, University Library of Munich, Germany.
- Romain Bompis, 2017. "Weak approximations for arithmetic means of geometric Brownian motions and applications to Basket options," Working Papers hal-01502886, HAL.
- Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
- Dan Pirjol & Lingjiong Zhu, 2017. "Short Maturity Asian Options for the CEV Model," Papers 1702.03382, arXiv.org.
- Andrea Pascucci & Marco Di Francesco, 2005. "On the complete model with stochastic volatility by Hobson and Rogers," Finance 0503013, University Library of Munich, Germany.
- Jitka Hilliard & Wei Li, 2014. "Volatilities implied by price changes in the S&P 500 options and futures contracts," Review of Quantitative Finance and Accounting, Springer, vol. 42(4), pages 599-626, May.
- Wael Bahsoun & Pawel Góra & Silvia Mayoral & Manuel Morales, 2006. "Random Dynamics and Finance: Constructing Implied Binomial Trees from a Predetermined Stationary Den," Faculty Working Papers 13/06, School of Economics and Business Administration, University of Navarra.
- Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
More about this item
Keywords
European quanto derivatives; convexity adjustment; volatility skew/smile; local volatility FX-LIBOR model; expansion formula; analytical approximations; Malliavin calculus;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:21:y:2018:i:02:n:s0219024918500176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.