IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v17y2014i2p157-165.html
   My bibliography  Save this article

A Systems Approach for Evaluating the Effectiveness of Radiological and Nuclear Detection Architectures in Urban Areas

Author

Listed:
  • Samrat Chatterjee
  • Daniel E. Salazar
  • Isaac Maya

Abstract

A key mission for the Domestic Nuclear Detection Office (DNDO) is to build state and local capabilities through radiological and nuclear (RN) detection, support equipment, and training systems. To support DNDO’s capabilities at local jurisdictional levels within the US interior, this study contributes to the state‐of‐the‐art by extending the systems engineering approach toward identifying challenges to the practical effectiveness of RN detection architectures protecting potential urban area RN target and source sites. The study outcomes point to the technological challenges that need to be addressed for a viable urban detection system. Characteristics of RN target and source sites are discussed, and a detection probability model for a system of detectors is presented. Different detection layouts are evaluated, and implementation impacts are estimated in terms of vehicular delays. The methodology is illustrated in a case study application for regions within the State of California.

Suggested Citation

  • Samrat Chatterjee & Daniel E. Salazar & Isaac Maya, 2014. "A Systems Approach for Evaluating the Effectiveness of Radiological and Nuclear Detection Architectures in Urban Areas," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 157-165, June.
  • Handle: RePEc:wly:syseng:v:17:y:2014:i:2:p:157-165
    DOI: 10.1002/sys.21260
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21260
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21260?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gary Gaukler & Chenhua Li & Rory Cannaday & Sunil Chirayath & Yu Ding, 2011. "Detecting nuclear materials smuggling: using radiography to improve container inspection policies," Annals of Operations Research, Springer, vol. 187(1), pages 65-87, July.
    2. H. Rosoff & D. Von Winterfeldt, 2007. "A Risk and Economic Analysis of Dirty Bomb Attacks on the Ports of Los Angeles and Long Beach," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 533-546, June.
    3. Nedialko Dimitrov & Dennis Michalopoulos & David Morton & Michael Nehme & Feng Pan & Elmira Popova & Erich Schneider & Gregory Thoreson, 2011. "Network deployment of radiation detectors with physics-based detection probability calculations," Annals of Operations Research, Springer, vol. 187(1), pages 207-228, July.
    4. Michael P. Atkinson & Zheng Cao & Lawrence M. Wein, 2008. "Optimal Stopping Analysis of a Radiation Detection System to Protect Cities from a Nuclear Terrorist Attack," Risk Analysis, John Wiley & Sons, vol. 28(2), pages 353-371, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gary M. Gaukler & Chenhua Li & Yu Ding & Sunil S. Chirayath, 2012. "Detecting Nuclear Materials Smuggling: Performance Evaluation of Container Inspection Policies," Risk Analysis, John Wiley & Sons, vol. 32(3), pages 531-554, March.
    2. Dreiding, Rebecca A. & McLay, Laura A., 2013. "An integrated model for screening cargo containers," European Journal of Operational Research, Elsevier, vol. 230(1), pages 181-189.
    3. Chenhua Li & Gary M. Gaukler & Yu Ding, 2013. "Using container inspection history to improve interdiction logistics for illicit nuclear materials," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 433-448, September.
    4. McLay, Laura A. & Dreiding, Rebecca, 2012. "Multilevel, threshold-based policies for cargo container security screening systems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 522-529.
    5. Jason R. W. Merrick & Laura A. McLay, 2010. "Is Screening Cargo Containers for Smuggled Nuclear Threats Worthwhile?," Decision Analysis, INFORMS, vol. 7(2), pages 155-171, June.
    6. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    7. Song, Cen & Zhuang, Jun, 2017. "N-stage security screening strategies in the face of strategic applicants," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 292-301.
    8. Barry Charles Ezell & Steven P. Bennett & Detlof Von Winterfeldt & John Sokolowski & Andrew J. Collins, 2010. "Probabilistic Risk Analysis and Terrorism Risk," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 575-589, April.
    9. Michael P. Atkinson & Lawrence M. Wein, 2008. "TECHNICAL NOTE---Spatial Queueing Analysis of an Interdiction System to Protect Cities from a Nuclear Terrorist Attack," Operations Research, INFORMS, vol. 56(1), pages 247-254, February.
    10. Darshan Chauhan & Avinash Unnikrishnan & Stephen D. Boyles & Priyadarshan N. Patil, 2024. "Robust maximum flow network interdiction considering uncertainties in arc capacity and resource consumption," Annals of Operations Research, Springer, vol. 335(2), pages 689-725, April.
    11. Chaya Losada & M. Scaparra & Richard Church & Mark Daskin, 2012. "The stochastic interdiction median problem with disruption intensity levels," Annals of Operations Research, Springer, vol. 201(1), pages 345-365, December.
    12. Gregory S. Parnell & Christopher M. Smith & Frederick I. Moxley, 2010. "Intelligent Adversary Risk Analysis: A Bioterrorism Risk Management Model," Risk Analysis, John Wiley & Sons, vol. 30(1), pages 32-48, January.
    13. Niyazi Onur Bakır, 2008. "A Decision Tree Model for Evaluating Countermeasures to Secure Cargo at United States Southwestern Ports of Entry," Decision Analysis, INFORMS, vol. 5(4), pages 230-248, December.
    14. Jae Hun Kim & Juyeon Kim & Gunwoo Lee & Juneyoung Park, 2021. "Machine Learning-Based Models for Accident Prediction at a Korean Container Port," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
    15. Michael Greenberg, 2011. "Risk analysis and port security: some contextual observations and considerations," Annals of Operations Research, Springer, vol. 187(1), pages 121-136, July.
    16. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    17. Musegaas, Marieke & Schlicher, Loe & Blok, Herman, 2022. "Stackelberg production-protection games: Defending crop production against intentional attacks," European Journal of Operational Research, Elsevier, vol. 297(1), pages 102-119.
    18. Duncan A. Robertson, 2019. "Spatial Transmission Models: A Taxonomy and Framework," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 225-243, January.
    19. Ran D Balicer & Christina L Catlett & Daniel J Barnett & Carol B Thompson & Edbert B Hsu & Melinda J Morton & Natalie L Semon & Christopher M Watson & Howard S Gwon & Jonathan M Links, 2011. "Characterizing Hospital Workers' Willingness to Respond to a Radiological Event," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-7, October.
    20. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:17:y:2014:i:2:p:157-165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.