IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v32y2024i3p2385-2402.html
   My bibliography  Save this article

Willingness to pay for climate change mitigation measures in households: Bundling up renewable energy, energy efficiency, and renovation

Author

Listed:
  • Tomas Balezentis
  • Dalia Streimikiene
  • Gintare Stankuniene
  • Olatunji Abdul Shobande

Abstract

Through their consumption behavior, households are responsible for more than 70% of total global greenhouse gas emissions. Therefore, the GHG emission reduction potential due to the household behavior is very high. Energy consumption is the main source of the GHG emission in households. There are two main ways to reduce GHG emissions in households: use of renewable energy, energy efficiency improvement, and energy conservation due to changes in the energy use patterns. The highest energy saving potential in households is linked with building renovation, followed by the use of energy efficient appliances (including lighting). Renewable energy microgeneration technologies in households also provide opportunities for GHG emission reduction. Although there have been many policies developed to reduce GHG emissions from energy consumption in households, they still need to be more effective. This paper aims to assess willingness of Lithuanian households to reduce GHG emissions from energy consumption in households by embarking on energy renovation of buildings, use of energy efficient appliances and use of renewable energy technologies. The willingness to pay for these GHG emission reduction measures allows to compare household preferences with respect to available support measures and assess the adequacy of such measures. The paper also discusses household attitudes toward the main policies and measures for GHG emission reduction. The results show the highest willingness to pay for energy efficient appliances, followed by renewable energy technologies. The willingness to pay for energy renovation is the lowest one and such s measure requires significant state support.

Suggested Citation

  • Tomas Balezentis & Dalia Streimikiene & Gintare Stankuniene & Olatunji Abdul Shobande, 2024. "Willingness to pay for climate change mitigation measures in households: Bundling up renewable energy, energy efficiency, and renovation," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 2385-2402, June.
  • Handle: RePEc:wly:sustdv:v:32:y:2024:i:3:p:2385-2402
    DOI: 10.1002/sd.2784
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2784
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2784?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nair, Gireesh & Gustavsson, Leif & Mahapatra, Krushna, 2010. "Factors influencing energy efficiency investments in existing Swedish residential buildings," Energy Policy, Elsevier, vol. 38(6), pages 2956-2963, June.
    2. Tol, Richard S. J., 2005. "The marginal damage costs of carbon dioxide emissions: an assessment of the uncertainties," Energy Policy, Elsevier, vol. 33(16), pages 2064-2074, November.
    3. J. Brusselaers & K. Breemersch & T. Geerken & M. Christis & B. Lahcen & Y. Dams, 2022. "Correction to: Macroeconomic and environmental consequences of circular economy measures in a small open economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(3), pages 819-819, June.
    4. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    5. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    6. Johannes Diederich & Timo Goeschl, 2014. "Willingness to Pay for Voluntary Climate Action and Its Determinants: Field-Experimental Evidence," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 57(3), pages 405-429, March.
    7. Bianchi, Marco & Cordella, Mauro, 2023. "Does circular economy mitigate the extraction of natural resources? Empirical evidence based on analysis of 28 European economies over the past decade," Ecological Economics, Elsevier, vol. 203(C).
    8. Jovović, Ivana & Cirman, Andreja & Hrovatin, Nevenka & Zorić, Jelena, 2023. "Do social capital and housing-related lifestyle foster energy-efficient retrofits? Retrospective panel data evidence from Slovenia," Energy Policy, Elsevier, vol. 179(C).
    9. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & González-Caballín, Juan M. & Carpio, Manuel, 2023. "Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain," Energy, Elsevier, vol. 276(C).
    10. Sardianou, Eleni, 2007. "Estimating energy conservation patterns of Greek households," Energy Policy, Elsevier, vol. 35(7), pages 3778-3791, July.
    11. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, December.
    12. Löschel, Andreas & Sturm, Bodo & Vogt, Carsten, 2013. "The demand for climate protection—Empirical evidence from Germany," Economics Letters, Elsevier, vol. 118(3), pages 415-418.
    13. Pettifor, H. & Wilson, C. & Chryssochoidis, G., 2015. "The appeal of the green deal: Empirical evidence for the influence of energy efficiency policy on renovating homeowners," Energy Policy, Elsevier, vol. 79(C), pages 161-176.
    14. Ronald J. Sutherland, 1991. "Market Barriers to Energy-Efficiency Investments," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 15-34.
    15. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    16. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    17. Shardul Agrawala & Francesco Bosello & Carlo Carraro & Kelly De Bruin & Enrica De Cian & Rob Dellink & Elisa Lanzi, 2011. "Plan Or React? Analysis Of Adaptation Costs And Benefits Using Integrated Assessment Models," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 2(03), pages 175-208.
    18. Krese, Gorazd & Lampret, Žiga & Butala, Vincenc & Prek, Matjaž, 2018. "Determination of a Building's balance point temperature as an energy characteristic," Energy, Elsevier, vol. 165(PB), pages 1034-1049.
    19. Lin, Boqiang & Okyere, Michael Adu, 2023. "Race and energy poverty: The moderating role of subsidies in South Africa," Energy Economics, Elsevier, vol. 117(C).
    20. Ronald J. Sutherland, 1991. "Market Barriers to Energy-Efficiency Investments," The Energy Journal, , vol. 12(3), pages 15-34, July.
    21. Trotta, Gianluca, 2018. "The determinants of energy efficient retrofit investments in the English residential sector," Energy Policy, Elsevier, vol. 120(C), pages 175-182.
    22. J. Brusselaers & K. Breemersch & T. Geerken & M. Christis & B. Lahcen & Y. Dams, 2022. "Macroeconomic and environmental consequences of circular economy measures in a small open economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 283-306, April.
    23. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2018. "Preferences for Energy Efficiency vs. Renewables: What Is the Willingness to Pay to Reduce CO2 Emissions?," Ecological Economics, Elsevier, vol. 144(C), pages 171-185.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2018. "Preferences for Energy Efficiency vs. Renewables: What Is the Willingness to Pay to Reduce CO2 Emissions?," Ecological Economics, Elsevier, vol. 144(C), pages 171-185.
    2. Alberini, Anna & Ščasný, Milan & Bigano, Andrea, 2018. "Policy- v. individual heterogeneity in the benefits of climate change mitigation: Evidence from a stated-preference survey," Energy Policy, Elsevier, vol. 121(C), pages 565-575.
    3. Spyridaki, Niki-Artemis & Stavrakas, Vassilis & Dendramis, Yiannis & Flamos, Alexandros, 2020. "Understanding technology ownership to reveal adoption trends for energy efficiency measures in the Greek residential sector," Energy Policy, Elsevier, vol. 140(C).
    4. Daan Hulshof & Machiel Mulder, 2020. "Willingness to Pay for $$\hbox {CO}_2$$CO2 Emission Reductions in Passenger Car Transport," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 899-929, April.
    5. Henningsen, Geraldine & Wiese, Catharina, 2019. "Do Household Characteristics Really Matter? A Meta-Analysis on the Determinants of Households’ Energy-Efficiency Investments," MPRA Paper 101701, University Library of Munich, Germany.
    6. Morton, Craig & Wilson, Charlie & Anable, Jillian, 2018. "The diffusion of domestic energy efficiency policies: A spatial perspective," Energy Policy, Elsevier, vol. 114(C), pages 77-88.
    7. Helena Fornwagner & Oliver P. Hauser, 2022. "Climate Action for (My) Children," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(1), pages 95-130, January.
    8. Schleich, Joachim & Faure, Corinne & Meissner, Thomas, 2021. "Adoption of retrofit measures among homeowners in EU countries: The effects of access to capital and debt aversion," Energy Policy, Elsevier, vol. 149(C).
    9. Richard S.J. Tol, 2021. "Estimates of the social cost of carbon have not changed over time," Working Paper Series 0821, Department of Economics, University of Sussex Business School.
    10. Andreas Loschel & Michael Price & Laura Razzolini & Madeline Werthschulte, 2020. "Negative income shocks and the support of environmental policies - Insights from the COVID-19 pandemic," Framed Field Experiments 00710, The Field Experiments Website.
    11. Matheus Koengkan & Nuno Silva & José Alberto Fuinhas, 2023. "Assessing Energy Performance Certificates for Buildings: A Fuzzy Set Qualitative Comparative Analysis (fsQCA) of Portuguese Municipalities," Energies, MDPI, vol. 16(7), pages 1-30, April.
    12. Halkos, George, 2014. "The Economics of Climate Change Policy: Critical review and future policy directions," MPRA Paper 56841, University Library of Munich, Germany.
    13. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    14. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    15. Alberini, Anna & Bigano, Andrea & Ščasný, Milan & Zvěřinová, Iva, 2016. "Preferences for Energy Efficiency vs. Renewables: How Much Does a Ton of CO2 Emissions Cost?," MITP: Mitigation, Innovation and Transformation Pathways 249352, Fondazione Eni Enrico Mattei (FEEM).
    16. James A. Gana & Thomas Hoppe, 2017. "Assessment of the Governance System Regarding Adoption of Energy Efficient Appliances by Households in Nigeria," Energies, MDPI, vol. 10(1), pages 1-21, January.
    17. Claudy, Marius & Michelsen, Claus, 2016. "Housing Market Fundamentals, Housing Quality and Energy Consumption: Evidence from Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 37(4), pages 25-43.
    18. Schlomann, Barbara & Schleich, Joachim, 2015. "Adoption of low-cost energy efficiency measures in the tertiary sector—An empirical analysis based on energy survey data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1127-1133.
    19. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    20. Akhatova, A. & Derkenbaeva, E. & van Leeuwen, E. & Kranzl, L. & Halleck Vega, S. & Hofstede, G.J., 2024. "Who invests in energy retrofits? Mining Dutch homeowners’ data," Energy Policy, Elsevier, vol. 189(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:32:y:2024:i:3:p:2385-2402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.