IDEAS home Printed from https://ideas.repec.org/a/wly/sustdv/v29y2021i5p906-914.html
   My bibliography  Save this article

Waste to energy in Kathmandu Nepal—A way toward achieving sustainable development goals

Author

Listed:
  • Sunil Prasad Lohani
  • Martina Keitsch
  • Siddhartha Shakya
  • David Fulford

Abstract

The Sustainable Development Goals (SDG) explicitly focus on responsible use of resources, production, and consumption, which comprises sensible waste management includes SDG 3, 7, 11, and 12. Yet, gaps between policies and current waste management practices are prevailing globally as well as nationally. This article discusses waste management (WM) in Kathmandu Metropolitan City (KMC) with a focus on cleaner technology. Waste management has always been an issue in KMC with almost all wastes being dumped directly to a landfill site. The article aims to points out challenge with current waste management based on literature‐ and document reviews. Further, it introduces and analyses technologies to convert waste into energy and evaluates the applicability of the Asian Develop Bank recommendations for waste management in KMC and suggests strategies toward aligning KMC waste management with Nepal's SDG agenda. Findings indicate that Kathmandu has huge potential for implementing waste to energy technologies, and anaerobic digestion seems one of the most promising technologies. Yet, the city lacks a proper waste treatment infrastructure and would benefit from a systematic alignment of technology, policy, and environmental possibilities and challenges in both analysis, planning, and design.

Suggested Citation

  • Sunil Prasad Lohani & Martina Keitsch & Siddhartha Shakya & David Fulford, 2021. "Waste to energy in Kathmandu Nepal—A way toward achieving sustainable development goals," Sustainable Development, John Wiley & Sons, Ltd., vol. 29(5), pages 906-914, September.
  • Handle: RePEc:wly:sustdv:v:29:y:2021:i:5:p:906-914
    DOI: 10.1002/sd.2183
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sd.2183
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sd.2183?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taleghani, Giti & Shabani Kia, Akbar, 2005. "Technical–economical analysis of the Saveh biogas power plant," Renewable Energy, Elsevier, vol. 30(3), pages 441-446.
    2. Asian Development Bank (ADB), 2013. "Solid Waste Management in Nepal: Current Status and Policy Recommendations," ADB Reports RPT135798, Asian Development Bank (ADB), revised 16 Dec 2013.
    3. Syed Abdul Rehman Khan & Arshian Sharif & Hêriş Golpîra & Anil Kumar, 2019. "A green ideology in Asian emerging economies: From environmental policy and sustainable development," Sustainable Development, John Wiley & Sons, Ltd., vol. 27(6), pages 1063-1075, November.
    4. Themelis, Nickolas J. & Ulloa, Priscilla A., 2007. "Methane generation in landfills," Renewable Energy, Elsevier, vol. 32(7), pages 1243-1257.
    5. Abubaker, J. & Risberg, K. & Pell, M., 2012. "Biogas residues as fertilisers – Effects on wheat growth and soil microbial activities," Applied Energy, Elsevier, vol. 99(C), pages 126-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bin Xue & Bingsheng Liu & Tao Liang & Dong Zhao & Tao Wang & Xingbin Chen, 2022. "A heterogeneous decision criteria system evaluating sustainable infrastructure development: From the lens of multidisciplinary stakeholder engagement," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(4), pages 556-579, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    2. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    3. Chien-Ming Wang & Tsung-Pao Wu, 2022. "Does tourism promote or reduce environmental pollution? Evidence from major tourist arrival countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3334-3355, March.
    4. Jan Moestedt & Sören Nilsson Påledal & Anna Schnürer & Erik Nordell, 2013. "Biogas Production from Thin Stillage on an Industrial Scale—Experience and Optimisation," Energies, MDPI, vol. 6(11), pages 1-14, October.
    5. Wang, Xiuli, 2023. "Exploring the role of resource industry dependence and green finance in green development efficiency in the context of post-Covid-19 period," Resources Policy, Elsevier, vol. 85(PB).
    6. Kerstin Nielsen & Christina-Luise Roß & Marieke Hoffmann & Andreas Muskolus & Frank Ellmer & Timo Kautz, 2020. "The Chemical Composition of Biogas Digestates Determines Their Effect on Soil Microbial Activity," Agriculture, MDPI, vol. 10(6), pages 1-20, June.
    7. Marc Audi & Amjad Ali, 2023. "Public Policy and Economic Misery Nexus: A Comparative Analysis of Developed and Developing World," International Journal of Economics and Financial Issues, Econjournals, vol. 13(3), pages 56-73, May.
    8. Diyamandoglu, Vasil & Fortuna, Lorena M., 2015. "Deconstruction of wood-framed houses: Material recovery and environmental impact," Resources, Conservation & Recycling, Elsevier, vol. 100(C), pages 21-30.
    9. Reijnders, L., 2009. "Are forestation, bio-char and landfilled biomass adequate offsets for the climate effects of burning fossil fuels?," Energy Policy, Elsevier, vol. 37(8), pages 2839-2841, August.
    10. Hao, Xiaoli & Yang, Hongxing & Zhang, Guoqiang, 2008. "Trigeneration: A new way for landfill gas utilization and its feasibility in Hong Kong," Energy Policy, Elsevier, vol. 36(10), pages 3662-3673, October.
    11. Ogunjuyigbe, A.S.O. & Ayodele, T.R. & Alao, M.A., 2017. "Electricity generation from municipal solid waste in some selected cities of Nigeria: An assessment of feasibility, potential and technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 149-162.
    12. Al Afif, Rafat & Linke, Bernd, 2019. "Biogas production from three-phase olive mill solid waste in lab-scale continuously stirred tank reactor," Energy, Elsevier, vol. 171(C), pages 1046-1052.
    13. Agostinho, Feni & Almeida, Cecília M.V.B. & Bonilla, Silvia H. & Sacomano, José B. & Giannetti, Biagio F., 2013. "Urban solid waste plant treatment in Brazil: Is there a net emergy yield on the recovered materials?," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 143-155.
    14. Zhang, Dongyang & Kong, Qunxi, 2022. "Renewable energy policy, green investment, and sustainability of energy firms," Renewable Energy, Elsevier, vol. 192(C), pages 118-133.
    15. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    16. Pedro Manuel Sousa & Maria João Moreira & Ana Pinto de Moura & Rui Costa Lima & Luís Miguel Cunha, 2021. "Consumer Perception of the Circular Economy Concept Applied to the Food Domain: An Exploratory Approach," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    17. World Bank, 2021. "Nepal," World Bank Publications - Reports 35500, The World Bank Group.
    18. Uddin, Md Mosleh & Simson, Amanda & Wright, Mark Mba, 2020. "Techno-economic and greenhouse gas emission analysis of dimethyl ether production via the bi-reforming pathway for transportation fuel," Energy, Elsevier, vol. 211(C).
    19. Franco Curadelli & Marcelo Alberto & Ernesto Martín Uliarte & Mariana Combina & Iván Funes-Pinter, 2023. "Meta-Analysis of Yields of Crops Fertilized with Compost Tea and Anaerobic Digestate," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    20. Yubraj Dahal & Bijay Thapa & Nawa Raj Khatiwada, 2020. "Recovery Potential and Feasibility of Composting and Recycling Incorporated Waste Management System in Nepal: A Case Study of Eight Municipalities," Journal of Development Innovations, KarmaQuest International, vol. 4(1), pages 89-98, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:sustdv:v:29:y:2021:i:5:p:906-914. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1099-1719 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.