Author
Abstract
In China's financial and economic system, the agricultural futures market plays an important role in guiding the market to self regulate and providing efficient information transmission for regulators. The effective prediction of futures prices can assist in guiding agricultural production, monitoring operational risks arising from significant price fluctuations, and enhancing the predictability and pertinence of the country's macroeconomic regulation policies. This study investigates the main variety of grain futures—soybean futures, taking into account complex market and non‐market influencing factors. Using historical market data and related news headlines of soybean futures as source data and integrating topic identification and sentiment analysis techniques, a novel framework for predicting agricultural futures prices that integrates topic sentiment is constructed. This model uses BERTopic to extract topic information from agricultural news texts, then integrates FinBERT to construct topic‐based sentiment features, fuses them with structured market features, and constructs LSTM price prediction model with multi‐feature inputs. In order to better model the short‐term features and state transfer patterns of the time series, hidden Markov model (HMM) is further used to extract the hidden states, which are deeply fused with the LSTM model. The empirical results show that the model fusing topic and sentiment features significantly improves the forecasting accuracy in all lags, LSTM works best in short‐term forecasting, and the combination of HMM and LSTM exhibits significant performance advantages in medium‐ and long‐term forecasting. Compared with the baseline model that relies only on market features, topic sentiment features provide important incremental information for price forecasting, and the contribution of each topic sentiment feature calculated based on the PI metric is close to 50%. In addition, deep learning–based prediction model performs better than baseline machine learning models in dealing with extreme external shocks such as climate disasters, the COVID‐19 pandemic, and the Russia–Ukraine conflict.
Suggested Citation
Wensheng Wang & Yuxi Liu, 2025.
"A Novel Framework for Agricultural Futures Price Prediction With BERT‐Based Topic Identification and Sentiment Analysis,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(6), pages 1969-1992, September.
Handle:
RePEc:wly:jforec:v:44:y:2025:i:6:p:1969-1992
DOI: 10.1002/for.3278
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:44:y:2025:i:6:p:1969-1992. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.