IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v41y2022i6p1248-1313.html
   My bibliography  Save this article

A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction

Author

Listed:
  • Weidong Guo
  • Zach Zhizhong Zhou

Abstract

Personal credit data usually contain a large number of features, some of which do not significantly contribute to the performance of default prediction models. Screening features through appropriate methods is essential to improve the efficiency of prediction models. However, little attention has been paid to feature selection methods in the area of personal loan default prediction. In this study, we employ random forest (RF), XGBoost, Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), and Light Gradient Boosting Machine (LightGBM) as base algorithms of wrapper and embedded methods to select features and use these algorithms as classifiers to predict personal loan default. We find that when classical filter methods are used to select features, the number of selected features needs to be large enough to enable tree‐based classifiers to get their best performance. However, when the tree‐based algorithm is used to select features, it only needs to select a small number of features to deliver a satisfactory classification performance. AdaBoost, Chi2, and F‐score are found to be ideal feature selection methods in the area of personal credit default prediction. Moreover, we find that it is better to use different algorithms in feature selection and classification; AdaBoost and CatBoost perform the best among all classifiers.

Suggested Citation

  • Weidong Guo & Zach Zhizhong Zhou, 2022. "A comparative study of combining tree‐based feature selection methods and classifiers in personal loan default prediction," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1248-1313, September.
  • Handle: RePEc:wly:jforec:v:41:y:2022:i:6:p:1248-1313
    DOI: 10.1002/for.2856
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2856
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2856?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Y Liu & M Schumann, 2005. "Data mining feature selection for credit scoring models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(9), pages 1099-1108, September.
    2. Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
    3. Artem Bequé & Kristof Coussement & Ross Gayler & Stefan Lessmann, 2017. "Approaches for credit scorecard calibration: An empirical analysis," Post-Print hal-01745262, HAL.
    4. Andreas Charitou & Evi Neophytou & Chris Charalambous, 2004. "Predicting corporate failure: empirical evidence for the UK," European Accounting Review, Taylor & Francis Journals, vol. 13(3), pages 465-497.
    5. Zanin, Luca, 2020. "Combining multiple probability predictions in the presence of class imbalance to discriminate between potential bad and good borrowers in the peer-to-peer lending market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
    6. Christophe Croux & Catherine Dehon, 2010. "Influence functions of the Spearman and Kendall correlation measures," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(4), pages 497-515, November.
    7. Fernandes, Guilherme Barreto & Artes, Rinaldo, 2016. "Spatial dependence in credit risk and its improvement in credit scoring," European Journal of Operational Research, Elsevier, vol. 249(2), pages 517-524.
    8. Tong, Edward N.C. & Mues, Christophe & Thomas, Lyn C., 2012. "Mixture cure models in credit scoring: If and when borrowers default," European Journal of Operational Research, Elsevier, vol. 218(1), pages 132-139.
    9. Koutanaei, Fatemeh Nemati & Sajedi, Hedieh & Khanbabaei, Mohammad, 2015. "A hybrid data mining model of feature selection algorithms and ensemble learning classifiers for credit scoring," Journal of Retailing and Consumer Services, Elsevier, vol. 27(C), pages 11-23.
    10. Trivedi, Shrawan Kumar, 2020. "A study on credit scoring modeling with different feature selection and machine learning approaches," Technology in Society, Elsevier, vol. 63(C).
    11. Finlay, Steven, 2011. "Multiple classifier architectures and their application to credit risk assessment," European Journal of Operational Research, Elsevier, vol. 210(2), pages 368-378, April.
    12. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    13. Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
    14. Blochlinger, Andreas & Leippold, Markus, 2006. "Economic benefit of powerful credit scoring," Journal of Banking & Finance, Elsevier, vol. 30(3), pages 851-873, March.
    15. Crook, Jonathan N. & Edelman, David B. & Thomas, Lyn C., 2007. "Recent developments in consumer credit risk assessment," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1447-1465, December.
    16. Janitza, Silke & Tutz, Gerhard & Boulesteix, Anne-Laure, 2016. "Random forest for ordinal responses: Prediction and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 57-73.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiaming Liu & Jiajia Liu & Chong Wu & Shouyang Wang, 2024. "Enhancing credit risk prediction based on ensemble tree‐based feature transformation and logistic regression," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 429-455, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guotai Chi & Zhipeng Zhang, 2017. "Multi Criteria Credit Rating Model for Small Enterprise Using a Nonparametric Method," Sustainability, MDPI, vol. 9(10), pages 1-23, October.
    2. Huei-Wen Teng & Michael Lee, 2019. "Estimation Procedures of Using Five Alternative Machine Learning Methods for Predicting Credit Card Default," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-27, September.
    3. Kolesnikova, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2019. "Can Deep Learning Predict Risky Retail Investors? A Case Study in Financial Risk Behavior Forecasting," IRTG 1792 Discussion Papers 2019-023, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    4. Rasa Kanapickiene & Renatas Spicas, 2019. "Credit Risk Assessment Model for Small and Micro-Enterprises: The Case of Lithuania," Risks, MDPI, vol. 7(2), pages 1-23, June.
    5. Lkhagvadorj Munkhdalai & Tsendsuren Munkhdalai & Oyun-Erdene Namsrai & Jong Yun Lee & Keun Ho Ryu, 2019. "An Empirical Comparison of Machine-Learning Methods on Bank Client Credit Assessments," Sustainability, MDPI, vol. 11(3), pages 1-23, January.
    6. Lessmann, Stefan & Baesens, Bart & Seow, Hsin-Vonn & Thomas, Lyn C., 2015. "Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research," European Journal of Operational Research, Elsevier, vol. 247(1), pages 124-136.
    7. Dimitris Andriosopoulos & Michalis Doumpos & Panos M. Pardalos & Constantin Zopounidis, 2019. "Computational approaches and data analytics in financial services: A literature review," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(10), pages 1581-1599, October.
    8. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    9. Jiang, Cuiqing & Wang, Zhao & Zhao, Huimin, 2019. "A prediction-driven mixture cure model and its application in credit scoring," European Journal of Operational Research, Elsevier, vol. 277(1), pages 20-31.
    10. Babaei, Golnoosh & Giudici, Paolo & Raffinetti, Emanuela, 2023. "Explainable FinTech lending," Journal of Economics and Business, Elsevier, vol. 125.
    11. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    12. Bravo, Cristián & Maldonado, Sebastián & Weber, Richard, 2013. "Granting and managing loans for micro-entrepreneurs: New developments and practical experiences," European Journal of Operational Research, Elsevier, vol. 227(2), pages 358-366.
    13. Do, Hung Xuan & Rösch, Daniel & Scheule, Harald, 2018. "Predicting loss severities for residential mortgage loans: A three-step selection approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 246-259.
    14. Akkoç, Soner, 2012. "An empirical comparison of conventional techniques, neural networks and the three stage hybrid Adaptive Neuro Fuzzy Inference System (ANFIS) model for credit scoring analysis: The case of Turkish cred," European Journal of Operational Research, Elsevier, vol. 222(1), pages 168-178.
    15. Cuiqing Jiang & Zhao Wang & Ruiya Wang & Yong Ding, 2018. "Loan default prediction by combining soft information extracted from descriptive text in online peer-to-peer lending," Annals of Operations Research, Springer, vol. 266(1), pages 511-529, July.
    16. Dangxing Chen & Weicheng Ye & Jiahui Ye, 2022. "Interpretable Selective Learning in Credit Risk," Papers 2209.10127, arXiv.org.
    17. Li, Yibei & Wang, Ximei & Djehiche, Boualem & Hu, Xiaoming, 2020. "Credit scoring by incorporating dynamic networked information," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1103-1112.
    18. Doumpos, Michalis & Zopounidis, Constantin & Gounopoulos, Dimitrios & Platanakis, Emmanouil & Zhang, Wenke, 2023. "Operational research and artificial intelligence methods in banking," European Journal of Operational Research, Elsevier, vol. 306(1), pages 1-16.
    19. Cao Son Tran & Dan Nicolau & Richi Nayak & Peter Verhoeven, 2021. "Modeling Credit Risk: A Category Theory Perspective," JRFM, MDPI, vol. 14(7), pages 1-21, July.
    20. Adnan Dželihodžić & Dženana Đonko & Jasmin Kevrić, 2018. "Improved Credit Scoring Model Based on Bagging Neural Network," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(06), pages 1725-1741, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:41:y:2022:i:6:p:1248-1313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.