IDEAS home Printed from
   My bibliography  Save this article

Empirical characterization of random forest variable importance measures


  • Archer, Kellie J.
  • Kimes, Ryan V.


No abstract is available for this item.

Suggested Citation

  • Archer, Kellie J. & Kimes, Ryan V., 2008. "Empirical characterization of random forest variable importance measures," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2249-2260, January.
  • Handle: RePEc:eee:csdana:v:52:y:2008:i:4:p:2249-2260

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Strobl, Carolin & Boulesteix, Anne-Laure & Augustin, Thomas, 2007. "Unbiased split selection for classification trees based on the Gini Index," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 483-501, September.
    2. van der Laan Mark J., 2006. "Statistical Inference for Variable Importance," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-33, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Francesco Lamperti & Andrea Roventini & Amir Sani, 2017. "Agent-Based Model Calibration using Machine Learning Surrogates," Sciences Po publications 2017-09, Sciences Po.
    2. repec:eee:reensy:v:142:y:2015:i:c:p:399-432 is not listed on IDEAS
    3. De Bock, Koen W. & Coussement, Kristof & Van den Poel, Dirk, 2010. "Ensemble classification based on generalized additive models," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1535-1546, June.
    4. repec:eee:touman:v:60:y:2017:i:c:p:430-438 is not listed on IDEAS
    5. Hapfelmeier, A. & Ulm, K., 2014. "Variable selection by Random Forests using data with missing values," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 129-139.
    6. Briand, Bénédicte & Ducharme, Gilles R. & Parache, Vanessa & Mercat-Rommens, Catherine, 2009. "A similarity measure to assess the stability of classification trees," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1208-1217, February.
    7. Gérard Biau & Erwan Scornet, 2016. "A random forest guided tour," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(2), pages 197-227, June.
    8. Hapfelmeier, A. & Ulm, K., 2013. "A new variable selection approach using Random Forests," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 50-69.
    9. Benjamin David, 2017. "Model economic phenomena with CART and Random Forest algorithms," EconomiX Working Papers 2017-46, University of Paris Nanterre, EconomiX.
    10. Rokach, Lior, 2009. "Taxonomy for characterizing ensemble methods in classification tasks: A review and annotated bibliography," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4046-4072, October.
    11. Chandler Gabriel & Stevens Guy, 2012. "An Exploratory Study of Minor League Baseball Statistics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(4), pages 1-28, November.
    12. repec:gam:jsusta:v:10:y:2017:i:1:p:10-:d:123833 is not listed on IDEAS

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:52:y:2008:i:4:p:2249-2260. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.