IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v11y2021i3p573-589.html
   My bibliography  Save this article

Analyzing the features of energy consumption and carbon emissions in the Upper Yangtze River Economic Zone

Author

Listed:
  • Lu Chen
  • Xin Li
  • Yunqi Yang
  • Minxi Wang

Abstract

As a vital resource endowment area and ecological barrier area in China, low‐carbon development in the upper reaches of the Yangtze River is of great significance. This paper compiled the emission inventory in the Upper Yangtze River Economic Zone in the IPCC regional emission accounting method framework and used the Environmental Kuznets Curve (EKC) model to evaluate economic development and carbon emissions. Finally, this paper used the time series method to predict carbon emissions to 2030. We find that carbon dioxide (CO2) emissions increased rapidly from 2004 to 2012. The average annual growth rate reached 9.16%. After 2012, carbon emissions in the region no longer grow steadily but fluctuate or even decline. The secondary industry contributed 79.77%, the tertiary industry contributed 17.78%, and the primary industry only 2.45% from 2000 to 2015. From the industrial sector and energy consumption, thermoelectricity production and supply division and nonmetallic mineral products industry are the sectors with the most CO2 emissions, accounting for 35.54% and 13.34%, respectively. Raw coal and coke are the main factors causing emissions. Nearly 61.32% of the carbon dioxide produced by raw coal comes from the electricity production sector. However, from 2011 to 2015, the CO2 emissions of raw coal decreased year by year, down by 23.32%. The impact of economic growth on carbon dioxide emissions supports the EKC hypothesis. The CO2 emissions in the Upper Yangtze River Economic Zone will decline after 2020, but Chongqing has shown an upward trend. With the above results, provinces and cities can optimize the regional industrial structure based on sectoral carbon emissions. The study area needs to develop clean energy to optimize the coal‐led energy consumption structure. Provinces and cities in the district can learn from each other's advanced emission reduction experience. © 2021 The Authors. Greenhouse Gases: Science and Technology published by Society of Chemical Industry and John Wiley & Sons Ltd.

Suggested Citation

  • Lu Chen & Xin Li & Yunqi Yang & Minxi Wang, 2021. "Analyzing the features of energy consumption and carbon emissions in the Upper Yangtze River Economic Zone," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 573-589, June.
  • Handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:573-589
    DOI: 10.1002/ghg.2067
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2067
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2067?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Grossman, G.M & Krueger, A.B., 1991. "Environmental Impacts of a North American Free Trade Agreement," Papers 158, Princeton, Woodrow Wilson School - Public and International Affairs.
    2. Song, Ma-Lin & Zhang, Wei & Wang, Shu-Hong, 2013. "Inflection point of environmental Kuznets curve in Mainland China," Energy Policy, Elsevier, vol. 57(C), pages 14-20.
    3. Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015. "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Nature, Nature, vol. 524(7565), pages 335-338, August.
    4. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    5. Onafowora, Olugbenga A. & Owoye, Oluwole, 2014. "Bounds testing approach to analysis of the environment Kuznets curve hypothesis," Energy Economics, Elsevier, vol. 44(C), pages 47-62.
    6. Zhou, Y. & Li, Y.P. & Huang, G.H., 2015. "Planning sustainable electric-power system with carbon emission abatement through CDM under uncertainty," Applied Energy, Elsevier, vol. 140(C), pages 350-364.
    7. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    8. Shan, Yuli & Liu, Jianghua & Liu, Zhu & Xu, Xinwanghao & Shao, Shuai & Wang, Peng & Guan, Dabo, 2016. "New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors," Applied Energy, Elsevier, vol. 184(C), pages 742-750.
    9. Zhou, Yang & Huang, Guo H. & Yang, Boting, 2013. "Water resources management under multi-parameter interactions: A factorial multi-stage stochastic programming approach," Omega, Elsevier, vol. 41(3), pages 559-573.
    10. Wu, Ya & Zhu, Qianwen & Zhu, Bangzhu, 2018. "Comparisons of decoupling trends of global economic growth and energy consumption between developed and developing countries," Energy Policy, Elsevier, vol. 116(C), pages 30-38.
    11. Lindmark, Magnus, 2002. "An EKC-pattern in historical perspective: carbon dioxide emissions, technology, fuel prices and growth in Sweden 1870-1997," Ecological Economics, Elsevier, vol. 42(1-2), pages 333-347, August.
    12. Coondoo, Dipankor & Dinda, Soumyananda, 2002. "Causality between income and emission: a country group-specific econometric analysis," Ecological Economics, Elsevier, vol. 40(3), pages 351-367, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingwei Li & Yicheng Huang & Xiangxue Li & Xiang Liu, 2023. "Mechanism of smart city policy on the carbon emissions of construction enterprises in the Yangtze River Economic Belt: a perspective of the PESTEL model and the pollution halo hypothesis," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    2. Xiaomei Shen & Hong Zheng & Mingdong Jiang & Xinxin Yu & Heyichen Xu & Guanyu Zhong, 2022. "Multidimensional Impact of Urbanization Process on Regional Net CO 2 Emissions: Taking the Yangtze River Economic Belt as an Example," Land, MDPI, vol. 11(7), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guglielmo Maria Caporale & Gloria Claudio-Quiroga & Luis A. Gil-Alana, 2019. "CO2 Emissions and GDP: Evidence from China," CESifo Working Paper Series 7881, CESifo.
    2. Bingjie Xu & Ruoyu Zhong & Yifeng Liu, 2019. "Comparison of CO 2 emissions reduction efficiency of household fuel consumption in China," Sustainability, MDPI, vol. 11(4), pages 1-13, February.
    3. Junbo Wang & Liu Chen & Lu Chen & Xiaohui Zhao & Minxi Wang & Yiyi Ju & Li Xin, 2019. "City-Level Features of Energy Footprints and Carbon Dioxide Emissions in Sichuan Province of China," Energies, MDPI, vol. 12(10), pages 1-14, May.
    4. Haider Mahmood & Maham Furqan & Muhammad Shahid Hassan & Soumen Rej, 2023. "The Environmental Kuznets Curve (EKC) Hypothesis in China: A Review," Sustainability, MDPI, vol. 15(7), pages 1-32, April.
    5. Afees A. Salisu & Lateef O. Akanni & Ahamuefula Ephraim Ogbonna, 2018. "Forecasting CO2 emissions: Does the choice of estimator matter?," Working Papers 045, Centre for Econometric and Allied Research, University of Ibadan.
    6. Zhou, Ya & Shan, Yuli & Liu, Guosheng & Guan, Dabo, 2018. "Emissions and low-carbon development in Guangdong-Hong Kong-Macao Greater Bay Area cities and their surroundings," Applied Energy, Elsevier, vol. 228(C), pages 1683-1692.
    7. Sabuj Kumar Mandal & Devleena Chakravarty, 2017. "Role of energy in estimating turning point of Environmental Kuznets Curve: an econometric analysis of the existing studies," Journal of Social and Economic Development, Springer;Institute for Social and Economic Change, vol. 19(2), pages 387-401, October.
    8. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    9. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    10. Ali, Wajahat & Abdullah, Azrai & Azam, Muhammad, 2017. "Re-visiting the environmental Kuznets curve hypothesis for Malaysia: Fresh evidence from ARDL bounds testing approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 990-1000.
    11. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    12. Stern, David I., 2004. "The Rise and Fall of the Environmental Kuznets Curve," World Development, Elsevier, vol. 32(8), pages 1419-1439, August.
    13. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    14. Sami Fethi & Elif Senyucel, 2021. "The role of tourism development on CO2 emission reduction in an extended version of the environmental Kuznets curve: evidence from top 50 tourist destination countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(2), pages 1499-1524, February.
    15. C. Seri & A. de Juan Fernandez, 2021. "The relationship between economic growth and environment. Testing the EKC hypothesis for Latin American countries," Papers 2105.11405, arXiv.org.
    16. C. Seri & A. de Juan Fernández, 2023. "CO2 emissions and income growth in Latin America: long-term patterns and determinants," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(5), pages 4491-4524, May.
    17. Mumin Atalay Cetin & Ibrahim Bakirtas, 2020. "The long-run environmental impacts of economic growth, financial development, and energy consumption: Evidence from emerging markets," Energy & Environment, , vol. 31(4), pages 634-655, June.
    18. Pandelis Mitsis, 2012. "Is there an Environmental Kuznets Curve in the Carbon Dioxide Emissions?," University of Cyprus Working Papers in Economics 16-2012, University of Cyprus Department of Economics.
    19. Saboori, Behnaz & Sulaiman, Jamalludin & Mohd, Saidatulakmal, 2012. "Economic growth and CO2 emissions in Malaysia: A cointegration analysis of the Environmental Kuznets Curve," Energy Policy, Elsevier, vol. 51(C), pages 184-191.
    20. Jie He, 2007. "Is the Environmental Kuznets Curve hypothesis valid for developing countries? A survey," Cahiers de recherche 07-03, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:11:y:2021:i:3:p:573-589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.