IDEAS home Printed from https://ideas.repec.org/a/trp/01jefa/jefa0016.html
   My bibliography  Save this article

Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero

Author

Listed:
  • Yhlas Sovbetov

    (London School of Commerce)

Abstract

This paper examines factors that influence prices of most common five cryptocurrencies such as Bitcoin, Ethereum, Dash, Litecoin, and Monero over 2010-2018 using weekly data. The study employs ARDL technique and documents several findings. First, cryptomarket-related factors such as market beta, trading volume, and volatility appear to be significant determinant for all five cryptocurrencies both in short- and long-run. Second, attractiveness of cryptocurrencies also matters in terms of their price determination, but only in long-run. This indicates that formation (recognition) of the attractiveness of cryptocurrencies are subjected to time factor. In other words, it travels slowly within the market. Third, SP500 index seems to have weak positive long-run impact on Bitcoin, Ethereum, and Litcoin, while its sign turns to negative losing significance in short-run, except Bitcoin that generates an estimate of -0.20 at 10% significance level. Lastly, error-correction models for Bitcoin, Etherem, Dash, Litcoin, and Monero show that cointegrated series cannot drift too far apart, and converge to a long-run equilibrium at a speed of 23.68%, 12.76%, 10.20%, 22.91%, and 14.27% respectively.

Suggested Citation

  • Yhlas Sovbetov, 2018. "Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 1-27.
  • Handle: RePEc:trp:01jefa:jefa0016
    DOI: http://dx.doi.org/10.1991/jefa.v2i2.a16
    as

    Download full text from publisher

    File URL: https://ojs.tripaledu.com/jefa/article/download/36/35
    Download Restriction: no

    File URL: http://ojs.tripaledu.com/jefa/article/view/36/36
    Download Restriction: no

    File URL: https://libkey.io/http://dx.doi.org/10.1991/jefa.v2i2.a16?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yhlas Sovbetov & Hami Saka, 2018. "Does it take two to tango: Interaction between Credit Default Swaps and National Stock Indices," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(1), pages 129-149.
    2. Obryan Poyser, 2017. "Exploring the determinants of Bitcoin's price: an application of Bayesian Structural Time Series," Papers 1706.01437, arXiv.org.
    3. David Yermack, 2013. "Is Bitcoin a Real Currency? An economic appraisal," NBER Working Papers 19747, National Bureau of Economic Research, Inc.
    4. M. Hashem Pesaran & Yongcheol Shin & Richard J. Smith, 2001. "Bounds testing approaches to the analysis of level relationships," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(3), pages 289-326.
    5. Chiu, Jonathan & Koeppl, Thorsten V, 2017. "The economics of cryptocurrencies – bitcoin and beyond," Working Paper Series 6688, Victoria University of Wellington, School of Economics and Finance.
    6. Jonathan Chiu & Thorsten V. Koeppl, 2017. "The Economics Of Cryptocurrencies - Bitcoin And Beyond," Working Paper 1389, Economics Department, Queen's University.
    7. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    8. Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
    11. Dyhrberg, Anne Haubo, 2016. "Hedging capabilities of bitcoin. Is it the virtual gold?," Finance Research Letters, Elsevier, vol. 16(C), pages 139-144.
    12. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    2. Haffar, Adlane & Le Fur, Eric, 2021. "Structural vector error correction modelling of Bitcoin price," The Quarterly Review of Economics and Finance, Elsevier, vol. 80(C), pages 170-178.
    3. Jiménez, Inés & Mora-Valencia, Andrés & Perote, Javier, 2022. "Semi-nonparametric risk assessment with cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 59(C).
    4. Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
    5. Gregor Dorfleitner & Carina Lung, 2018. "Cryptocurrencies from the perspective of euro investors: a re-examination of diversification benefits and a new day-of-the-week effect," Journal of Asset Management, Palgrave Macmillan, vol. 19(7), pages 472-494, December.
    6. Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022. "On the volatility of cryptocurrencies," Research in International Business and Finance, Elsevier, vol. 62(C).
    7. Parthajit Kayal & G. Balasubramanian, 2021. "Excess Volatility in Bitcoin: Extreme Value Volatility Estimation," IIM Kozhikode Society & Management Review, , vol. 10(2), pages 222-231, July.
    8. Mehmet Levent ERDAS & Abdullah Emre CAGLAR, 2018. "Analysis of the relationships between Bitcoin and exchange rate, commodities and global indexes by asymmetric causality test," Eastern Journal of European Studies, Centre for European Studies, Alexandru Ioan Cuza University, vol. 9, pages 27-45, December.
    9. Neveen Ahmed & Omar Farooq & Nidaa Hamed, 2023. "Relation Between Bitcoin and Its Forks: An Empirical Investigation," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 49(2), pages 249-261, April.
    10. Fang, Libing & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2019. "Does global economic uncertainty matter for the volatility and hedging effectiveness of Bitcoin?," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 29-36.
    11. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    12. Bildirici, Melike E. & Sonustun, Bahri, 2021. "Chaotic behavior in gold, silver, copper and bitcoin prices," Resources Policy, Elsevier, vol. 74(C).
    13. Hanna Halaburda & Guillaume Haeringer & Joshua Gans & Neil Gandal, 2022. "The Microeconomics of Cryptocurrencies," Journal of Economic Literature, American Economic Association, vol. 60(3), pages 971-1013, September.
    14. Parthajit Kayal & Purnima Rohilla, 2021. "Bitcoin in the economics and finance literature: a survey," SN Business & Economics, Springer, vol. 1(7), pages 1-21, July.
    15. Ke Wu & Spencer Wheatley & Didier Sornette, 2018. "Classification of cryptocurrency coins and tokens by the dynamics of their market capitalisations," Papers 1803.03088, arXiv.org, revised May 2018.
    16. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    17. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    18. Sercan Demiralay & Selçuk Bayracı, 2021. "Should stock investors include cryptocurrencies in their portfolios after all? Evidence from a conditional diversification benefits measure," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 6188-6204, October.
    19. Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
    20. Apopo, Natalay & Phiri, Andrew, 2019. "On the (in)efficiency of cryptocurrencies: Have they taken daily or weekly random walks?," MPRA Paper 94712, University Library of Munich, Germany.

    More about this item

    Keywords

    Cryptocurrency; Bitcoin; Ethereum; Cointegration; ARDL Bound Test; Error Correction Model.;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • D40 - Microeconomics - - Market Structure, Pricing, and Design - - - General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C59 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:trp:01jefa:jefa0016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: David Simon Hall (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.