IDEAS home Printed from https://ideas.repec.org/a/taf/transp/v38y2015i2p214-237.html
   My bibliography  Save this article

Control strategies for departure process delays at airport passenger terminals

Author

Listed:
  • Chaug-Ing Hsu
  • Ching-Cheng Chao
  • Nai-Wen Hsu

Abstract

This paper explores the characteristics of process delays at airport passenger terminals and establishes a queuing model for both passengers and baggage served by different connecting type facilities. The impact of delay propagation on other processes and flights is investigated using an analytical approach. In addition, the extra costs incurred on passengers, process operators, and airlines are examined using the delay cost functions. To reduce the impact of process delays, various delay-controlled strategies are proposed, such as setting scheduled times for completion of a process, increasing the number of service counters, and priority service for emergent flights. Taoyuan International Airport in Taiwan is used as a case study when facing special events. Results showed that the model can effectively and efficiently estimate delay propagation and its costs. In addition, processes that are not consecutive allow more buffer time between different operations, which helps ease propagation of delays caused by previous services.

Suggested Citation

  • Chaug-Ing Hsu & Ching-Cheng Chao & Nai-Wen Hsu, 2015. "Control strategies for departure process delays at airport passenger terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 214-237, March.
  • Handle: RePEc:taf:transp:v:38:y:2015:i:2:p:214-237
    DOI: 10.1080/03081060.2014.959358
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03081060.2014.959358
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03081060.2014.959358?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janson, Bruce N. & Southworth, Frank, 1992. "Estimating departure times from traffic counts using dynamic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 26(1), pages 3-16, February.
    2. Rietveld, Piet & Brons, Martijn, 2001. "Quality of hub-and-spoke networks; the effects of timetable co-ordination on waiting time and rescheduling time," Journal of Air Transport Management, Elsevier, vol. 7(4), pages 241-249.
    3. Yan, Shangyao & Tang, Chin-Hui & Chen, Miawjane, 2004. "A model and a solution algorithm for airport common use check-in counter assignments," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(2), pages 101-125, February.
    4. Wu, Cheng-Lung & Caves, Robert E, 2000. "Aircraft operational costs and turnaround efficiency at airports," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 201-208.
    5. A R Brentnall & R C H Cheng, 2009. "Some effects of aircraft arrival sequence algorithms," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(7), pages 962-972, July.
    6. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    7. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2002. "Network pricing optimization in multi-user and multimodal context with elastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 779-798, November.
    8. Hansen, Mark, 2002. "Micro-level analysis of airport delay externalities using deterministic queuing models: a case study," Journal of Air Transport Management, Elsevier, vol. 8(2), pages 73-87.
    9. Brunetta, Lorenzo & Righi, Luca & Andreatta, Giovanni, 1999. "An operations research model for the evaluation of an airport terminal: SLAM (simple landside aggregate model)," Journal of Air Transport Management, Elsevier, vol. 5(3), pages 161-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Zámková & Martin Prokop, 2015. "The Evaluation of Factors Influencing Flights Delay at Czech International Airports," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 63(6), pages 2187-2196.
    2. Martina Zámková & Stanislav Rojík & Martin Prokop & Radek Stolín, 2022. "Factors Affecting the International Flight Delays and Their Impact on Airline Operation and Management and Passenger Compensations Fees in Air Transport Industry: Case Study of a Selected Airlines in ," Sustainability, MDPI, vol. 14(22), pages 1-16, November.
    3. Mostafa Salari & R. John Milne & Lina Kattan, 2019. "Airplane boarding optimization considering reserved seats and passengers’ carry-on bags," OPSEARCH, Springer;Operational Research Society of India, vol. 56(3), pages 806-823, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    2. Lalita, T.R. & Manna, D.K. & Murthy, G.S.R., 2020. "Mathematical formulations for large scale check-in counter allocation problem," Journal of Air Transport Management, Elsevier, vol. 85(C).
    3. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    4. Neumann, Simone, 2019. "Is the boarding process on the critical path of the airplane turn-around?," European Journal of Operational Research, Elsevier, vol. 277(1), pages 128-137.
    5. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    6. Kim, Myeonghyeon & Choi, Yuri & Song, Ki Han, 2019. "Identification model development for proactive response on irregular operations (IROPs)," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 1-8.
    7. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    8. Lenaerts, Bert & Allroggen, Florian & Malina, Robert, 2021. "The economic impact of aviation: A review on the role of market access," Journal of Air Transport Management, Elsevier, vol. 91(C).
    9. Rodríguez-Sanz, à lvaro & Fernández de Marcos, Alberto & Pérez-Castán, Javier A. & Comendador, Fernando Gómez & Arnaldo Valdés, Rosa & París Loreiro, à ngel, 2021. "Queue behavioural patterns for passengers at airport terminals: A machine learning approach," Journal of Air Transport Management, Elsevier, vol. 90(C).
    10. Bellei, Giuseppe & Gentile, Guido & Papola, Natale, 2005. "A within-day dynamic traffic assignment model for urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 39(1), pages 1-29, January.
    11. Jacquillat, Alexandre & Odoni, Amedeo R., 2015. "Endogenous control of service rates in stochastic and dynamic queuing models of airport congestion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 133-151.
    12. Giovanna Miceli Ronzani Borille & Anderson Ribeiro Correia, 2013. "Determining factors in airport baggage claim level of service," International Journal of Aviation Management, Inderscience Enterprises Ltd, vol. 2(1/2), pages 66-79.
    13. Wang, Chunan & Wang, Xiaoyu, 2019. "Airport congestion delays and airline networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 328-349.
    14. Elnaz Miandoabchi & Reza Farahani & W. Szeto, 2012. "Bi-objective bimodal urban road network design using hybrid metaheuristics," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 583-621, December.
    15. Nombela, Gustavo & de Rus, Gines & Betancor, Ofelia, 2004. "Internalizing airport congestion," Utilities Policy, Elsevier, vol. 12(4), pages 323-331, December.
    16. Steffen, Jason H. & Hotchkiss, Jon, 2012. "Experimental test of airplane boarding methods," Journal of Air Transport Management, Elsevier, vol. 18(1), pages 64-67.
    17. Qiang, Sheng-Jie & Jia, Bin & Jiang, Rui & Huang, Qing-Xia & Radwan, Essam & Gao, Zi-You & Wang, Yu-Qing, 2016. "Symmetrical design of strategy-pairs for enplaning and deplaning an airplane," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 52-60.
    18. Lange, Anne & Sieling, Julian & Gonzalez Parra, Garoe, 2019. "Convergence in airline operations: The case of ground times," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 39-45.
    19. Bachmat, Eitan, 2019. "Airplane boarding meets express line queues," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1165-1177.
    20. Jiang Qian Ying, 2015. "Optimization for Multiclass Residential Location Models with Congestible Transportation Networks," Transportation Science, INFORMS, vol. 49(3), pages 452-471, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:transp:v:38:y:2015:i:2:p:214-237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GTPT20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.