IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Collaborative Knowledge Production in China: Regional Evidence from a Gravity Model Approach

  • Thomas Scherngell
  • Yuanjia Hu

Scherngell T. and Hu Y. Collaborative knowledge production in China: regional evidence from a gravity model approach, Regional Studies. This study investigates collaborative knowledge production in China from a regional perspective. The objective is to illustrate spatial patterns of research collaborations between thirty-one Chinese regions, and to estimate the impact of geographical, technological, and economic factors on the variation of cross-region collaboration activities within a negative binomial gravity model framework. Data are used on Chinese scientific publications from 2007 with multiple author addresses coming from the China National Knowledge Infrastructure (CNKI) database. The results provide evidence that geographical space impedes cross-region research collaborations in China. Technological proximity matters more than geography, while economic effects only play a minor role. [image omitted] Scherngell T. et Hu Y. La production en collaboration de la connaissance en Chine; des preuves regionales provenant d'un modele de gravite, Regional Studies. Cette etude examine la production en collaboration de la connaissance en Chine d'un point de vue regional. On cherche a illustrer les tendances geographiques de la recherche en collaboration pour trente et une regions chinoises et a estimer l'impact des facteurs a la fois geographiques, technologiques et economiques sur la variation des activites de collaboration interregionales au sein d'un modele de gravite du type binomial negatif. On emploie des donnees sur les publications scientifiques chinoises de 2007 dont les adresses a auteur multiples proviennent de la base de donnees China National Knowledge Infrastructure (CNKI). Les resultats laissent voir que l'espace geographique fait obstacle a la recherche interregionale en collaboration en Chine. La proximite de la technologie l'emporte sur la geographie, tandis que les retombees economiques ne jouent qu'un role secondaire. Publication en collaboration Production de la connaissance en collaboration Modele de gravite regional binomial negatif Regions chinoises Scherngell T. und Hu Y. Kollaborative Wissensproduktion in China: eine empirische Analyse mit raumlichen Interaktionsmodellen, Regional Studies. Die vorliegende Studie untersucht kollaborative Wissensproduktion in China aus einer regionalen Perspektive. Zielsetzung ist es, raumliche Muster kollaborativer Wissensproduktion zwischen 31 chinesischen Regionen zu beschreiben und den Einfluss von geographischen, technologischen und okonomischen Determinanten auf die Variation interregionaler Kollaborationsaktiviaten zu messen. Die Studie verwendet neue Daten aus der China National Knowledge Infrastructure (CNKI) Datenbank uber chinesische Ko-Publikationen mit mindestens zwei Autoren aus dem Jahr 2007. Die Ergebnisse zeigen, dass die Kollaborationswahrscheinlichkeit signifikant mit zunehmender geographischer Distanz abnimmt. Der Einfluss von technologischer Nahe ist jedoch wichtiger als geographische Distanzeffekte, wahrend okonomische Unterschiede eine geringere Rolle spielen. Ko-Publikationen Kollaborative Wissensproduktion Negatives binomiales Schwerkraftmodell Chinesische Regionen Scherngell T. y Hu Y. La produccion de conocimiento colaborador en China: ejemplo regional de un modelo de gravedad, Regional Studies. En este estudio investigamos la produccion de conocimiento colaborador en China desde una perspectiva regional. Nuestro objetivo es ilustrar los patrones espaciales de las colaboraciones de investigacion entre treinta y una regiones de China y calcular el impacto de determinantes geograficos, tecnologicos y economicos sobre la variacion de las actividades de colaboracion interregional segun una estructura de modelo de gravedad binomial negativa. Los datos utilizados proceden de publicaciones cientificas chinas de varios autores de 2007 que proceden de la base de datos de la Infraestructura de Conocimiento Nacional de China (CNKI). Los resultados demuestran que el espacio geografico obstaculiza las colaboraciones de investigacion interregionales en China. La proximidad tecnologica importa mas que la geografia mientras que los efectos economicos desempenan solamente un papel menor. Copublicaciones Produccion de conocimiento colaborador Modelo binomial negativo de gravedad regional Regiones chinas

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Regional Studies.

Volume (Year): 45 (2011)
Issue (Month): 6 ()
Pages: 755-772

in new window

Handle: RePEc:taf:regstd:v:45:y:2011:i:6:p:755-772
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:regstd:v:45:y:2011:i:6:p:755-772. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael McNulty)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.