IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Comparing the New Earnings Survey (NES) and the Labour Force Survey (LFS): An Analysis of the differences between the data sets and their implications for the pattern of geographical pay in the UK

Listed author(s):
  • H. Ada
  • Elizabeth Roberts
  • Robert Elliott
  • David Bell
  • Anthony Scott

Ma A., Roberts E., Elliott R. F., Bell D. and Scott A. (2006) Comparing the New Earnings Survey (NES) and the Labour Force Survey (LFS): an analysis of the differences between the data sets and their implications for the pattern of geographical pay in the UK, Regional Studies 40, 645-665. The Labour Force Survey (LFS) and the New Earnings Survey (NES) are the most widely used data sets for analysing pay in Britain. The paper details the key differences between the two and assesses the impact of their use for studying geographical wage differences. The pattern observed is sensitive to the differences in data sets, to differences in the sample populations, the questions asked about pay and working hours, and how hourly pay is measured. Recommendations are made on which data set should be used for what purposes as well as comments on the expected improvements that will result from the introduction of the Annual Survey of Hours and Earnings (ASHE). Ma A., Roberts E., Elliott R. F., Bell D. et Scott A. (2006) Comparer la NES a la LFS: une analyse de la difference entre les ensembles de donnees et leurs implications pour la distribution geographique des salaires au R-U, Regional Studies 40, 645-665. La Labour Force Survey (enquete aupres de la main-d'oeuvre) et la New Earnings Survey (enquete sur les salaires) sont les ensembles de donnees les plus utilises afin d'analyser les salaires en Grande-Bretagne. Cet article cherche a exposer a grands traits les differences capitales entre les deux et en evalue sur le plan geographique les implications quant a l'etude des ecarts des salaires. La distribution observee est sensible aux differences des ensembles de donnees: aux differences des echantillons, aux questions posees sur les salaires et les heures ouvrables, et a la mesure des gains horaires. On fait des recommandations a propos de l'ensemble que l'on devrait employer et pour quelle raison, et on commente diverses ameliorations attendues suite a l'introduction de la Annual Survey of Hours and Earnings (enquete annuelle des heures et des salaires). Enquete aupres de la main-d'oeuvre Enquete sur les gains Enquete annuelle sur les heures et les salaires Regional Geographique Ecarts des salaires geographiques Ma A., Roberts E., Elliott R. F., Bell D. und Scott A. (2006) Ein Vergleich zwischen Untersuchung der Erwerbstatigkeit und Untersuchung der Neuordnung der Entlohnung: eine Analyse der Unterschiede zwischen Datenreihen und ihren Implikationen fur das geographische Muster der Lohne und Gehalter im UK, Regional Studies 40, 645-665. Die Untersuchung der Erwerbstatigkeit und die Untersuchung der Neuordnung der Entlohnungen sind die am haufigsten benutzten Datenreihen zur Analyse der Lohne und Gehalter in Grossbritannien. Dieser Aufsatz legt eine detaillierte Auffuhrung der Hauptunterschiede zwischen den beiden vor, und beurteilt die Auswirkung ihrer Anwendung zur Untersuchung geographisch bestimmter Lohnunterschiede. Die beobachteten Muster reagieren empfindlich auf Unterschiede in Datenreihen, auf Unterschiede in den zu Stichproben ausgewahlten Teilen der Bevolkerung, den Fragen betreff Arbeitstunden und Entlohnung, und wie Stundenlohne bemessen werden. Die Autoren legen Empfehlungen fur die Anwendung bestimmter Datenreihen fur bestimmte Zwecke vor, und aussern sich zu den zu erwartenden Verbesserungen, die sich aus der Einfuhrung der alljahrlich zu wiederholenden Untersuchung von Arbeitsstunden und Verdienst ergeben werden. Untersuchung der Erwerbstatigen Untersuchung der Neuordnung von Lohnen und Gehaltern Jahresuntersuchung der Arbeitstunden und Verdienste Regionale raumliche und geographische Lohnunterschiede Ma A., Roberts E., Elliott R. F., Bell D. y Scott A. (2006) Comparacion de la Encuesta de Poblacion Activa y el Estudio sobre los Ingresos: Un analisis de las diferencias entre los grupos de datos y sus repercusiones para el modelo de salario por zona geografica en el Reino Unido, Regional Studies 40, 645-665. La Encuesta de Poblacion Activa (Labour Force Survey) y el Estudio sobre los Ingresos (New Earnings Survey) son los datos que mas se utilizan en el Reino Unido para analizar los salarios. En este ensayo explicamos detalladamente las diferencias basicas entre los dos y analizo su impacto para estudiar las diferencias de salarios en funcion del lugar geografico. El modelo observado es susceptible a las diferencias en los grupos de datos: a diferenciar las poblaciones de muestra, las preguntas formuladas sobre el salario y las horas laborales y como se mide el salario por horas. Recomendamos que grupo de datos deberia utilizarse en funcion de los objetivos y comentamos que mejoras pueden esperarse de la introduccion del Estudio Anual de Horas e Ingresos. Encuesta de Poblacion Activa Estudio sobre los Ingresos Estudio Anual de Horas e Ingresos Regional Espacial Diferencias de sueldo por zonas geograficas

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Taylor & Francis Journals in its journal Regional Studies.

Volume (Year): 40 (2006)
Issue (Month): 6 ()
Pages: 645-665

in new window

Handle: RePEc:taf:regstd:v:40:y:2006:i:6:p:645-665
DOI: 10.1080/00343400600868879
Contact details of provider: Web page:

Order Information: Web:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Ross Williams, 2013. "Introduction," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 46(4), pages 460-461, December.
  2. Helen Robinson, 2005. "Regional evidence on the effect of the national minimum wage on the gender pay gap," Regional Studies, Taylor & Francis Journals, vol. 39(7), pages 855-872.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:taf:regstd:v:40:y:2006:i:6:p:645-665. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.