IDEAS home Printed from
   My bibliography  Save this article

Calibration of a nonlinear feedback option pricing model


  • Simona Sanfelici


We consider the option pricing model proposed by Mancino and Ogawa, where the implementation of dynamic hedging strategies has a feedback impact on the price process of the underlying asset. We present numerical results showing that the smile and skewness patterns of implied volatility can actually be reproduced as a consequence of dynamical hedging. The simulations are performed using a suitable semi-implicit finite difference method. Moreover, we perform a calibration of the nonlinear model to market data and we compare it with more popular models, such as the Black-Scholes formula, the Jump-Diffusion model and Heston's model. In judging the alternative models, we consider the following issues: (i) the consistency of the implied structural parameters with the times-series data; (ii) out-of-sample pricing; and (iii) parameter uniformity across different moneyness and maturity classes. Overall, nonlinear feedback due to hedging strategies can, at least in part, contribute to the explanation from a theoretical and quantitative point of view of the strong pricing biases of the Black-Scholes formula, although stochastic volatility effects are more important in this regard.

Suggested Citation

  • Simona Sanfelici, 2007. "Calibration of a nonlinear feedback option pricing model," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 95-110.
  • Handle: RePEc:taf:quantf:v:7:y:2007:i:1:p:95-110 DOI: 10.1080/14697680601019522

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bates, David S, 1991. " The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    2. Eckhard Platen & Martin Schweizer, 1998. "On Feedback Effects from Hedging Derivatives," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 67-84.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Harvey, Campbell R & Whaley, Robert E, 1991. " S&P 100 Index Option Volatility," Journal of Finance, American Finance Association, vol. 46(4), pages 1251-1261, September.
    6. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    7. Nicole El Karoui & Monique Jeanblanc-Picquè & Steven E. Shreve, 1998. "Robustness of the Black and Scholes Formula," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 93-126.
    8. RØdiger Frey, 1998. "Perfect option hedging for a large trader," Finance and Stochastics, Springer, vol. 2(2), pages 115-141.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    10. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    11. Maria Elvira Mancino & Shigeyoshi Ogawa, 2004. "Non Linear Feedback Effects by Hedging Strategies," World Scientific Book Chapters,in: Stochastic Processes And Applications To Mathematical Finance, chapter 12, pages 255-269 World Scientific Publishing Co. Pte. Ltd..
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Romuald Kenmoe & Simona Sanfelici, 2014. "An application of nonparametric volatility estimators to option pricing," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 37(2), pages 393-412, October.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:7:y:2007:i:1:p:95-110. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.