IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v4y2004i6p663-676.html
   My bibliography  Save this article

Pricing equity options everywhere

Author

Listed:
  • S. Dyrting

Abstract

Finite difference methods are a popular technique for pricing American options. Since their introduction to finance by Brennan and Schwartz their use has spread from vanilla calls and puts on one stock to path-dependent and exotic options on multiple assets. Despite the breadth of the problems they have been applied to, and the increased sophistication of some of the newer techniques, most approaches to pricing equity options have not adequately addressed the issues of unbounded computational domains and divergent diffusion coefficients. In this article it is shown that these two problems are related and can be overcome using multiple grids. This new technique allows options to be priced for all values of the underlying, and is illustrated using standard put options and the call on the maximum of two stocks. For the latter contract, I also derive a characterization of the asymptotic continuation region in terms of a one-dimensional option pricing problem, and give analytic formulae for the perpetual case.

Suggested Citation

  • S. Dyrting, 2004. "Pricing equity options everywhere," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 663-676.
  • Handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:663-676
    DOI: 10.1080/14697680500039142
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680500039142
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geltner, David & Riddiough, Timothy & Stojanovic, Srdjan, 1996. "Insights on the Effect of Land Use Choice: The Perpetual Option on the Best of Two Underlying Assets," Journal of Urban Economics, Elsevier, vol. 39(1), pages 20-50, January.
    2. M. A. H. Dempster & J. P. Hutton, 1999. "Pricing American Stock Options by Linear Programming," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 229-254.
    3. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(01), pages 87-100, March.
    4. Johnson, Herb, 1987. "Options on the Maximum or the Minimum of Several Assets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(03), pages 277-283, September.
    5. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-250.
    6. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    7. Courtadon, Georges, 1982. "A More Accurate Finite Difference Approximation for the Valuation of Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(05), pages 697-703, December.
    8. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286.
    9. M. A. H. Dempster & D. G. Richards, 2000. "Pricing American Options Fitting the Smile," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 157-177.
    10. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    11. Jérôme Barraquand & Thierry Pudet, 1996. "Pricing Of American Path-Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51.
    12. Schwartz, Eduardo S., 1977. "The valuation of warrants: Implementing a new approach," Journal of Financial Economics, Elsevier, vol. 4(1), pages 79-93, January.
    13. Brennan, Michael J. & Schwartz, Eduardo S., 1978. "Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(03), pages 461-474, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:4:y:2004:i:6:p:663-676. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.