IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v6y1999i3p177-195.html
   My bibliography  Save this article

Multigrid for American option pricing with stochastic volatility

Author

Listed:
  • Nigel Clarke
  • Kevin Parrott

Abstract

The paper describes an implicit finite difference approach to the pricing of American options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices and adaptive time-stepping.

Suggested Citation

  • Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
  • Handle: RePEc:taf:apmtfi:v:6:y:1999:i:3:p:177-195
    DOI: 10.1080/135048699334528
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/135048699334528
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187.
    2. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Norbert Hofmann & Eckhard Platen & Martin Schweizer, 1992. "Option Pricing Under Incompleteness and Stochastic Volatility," Mathematical Finance, Wiley Blackwell, vol. 2(3), pages 153-187.
    5. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 143-151, June.
    6. Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(03), pages 383-405, September.
    7. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(04), pages 589-607, December.
    8. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(03), pages 267-284, September.
    9. Brennan, Michael J. & Schwartz, Eduardo S., 1978. "Finite Difference Methods and Jump Processes Arising in the Pricing of Contingent Claims: A Synthesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 13(03), pages 461-474, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golbabai, A. & Ballestra, L.V. & Ahmadian, D., 2013. "Superconvergence of the finite element solutions of the Black–Scholes equation," Finance Research Letters, Elsevier, vol. 10(1), pages 17-26.
    2. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
    3. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
    4. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
    5. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
    6. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
    7. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:6:y:1999:i:3:p:177-195. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.