IDEAS home Printed from https://ideas.repec.org/r/taf/apmtfi/v6y1999i3p177-195.html
   My bibliography  Save this item

Multigrid for American option pricing with stochastic volatility

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Olena Burkovska & Maximilian Ga{ss} & Kathrin Glau & Mirco Mahlstedt & Wim Schoutens & Barbara Wohlmuth, 2016. "Calibration to American Options: Numerical Investigation of the de-Americanization," Papers 1611.06181, arXiv.org.
  2. Bertram During & Michel Fourni'e, 2014. "High-order compact finite difference scheme for option pricing in stochastic volatility models," Papers 1404.5140, arXiv.org.
  3. Adam Speight, 2010. "Multigrid Techniques in Economics," Operations Research, INFORMS, vol. 58(4-part-2), pages 1057-1078, August.
  4. E. Ngounda & K. C. Patidar & E. Pindza, 2014. "A Robust Spectral Method for Solving Heston’s Model," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 164-178, April.
  5. Oleksandr Zhylyevskyy, 2010. "A fast Fourier transform technique for pricing American options under stochastic volatility," Review of Derivatives Research, Springer, vol. 13(1), pages 1-24, April.
  6. Bartosz Jaroszkowski & Max Jensen, 2021. "Valuation of European Options under an Uncertain Market Price of Volatility Risk," Papers 2105.09581, arXiv.org.
  7. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
  8. Bertram During & Alexander Pitkin, 2017. "High-order compact finite difference scheme for option pricing in stochastic volatility jump models," Papers 1704.05308, arXiv.org, revised Feb 2019.
  9. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
  10. Yacin Jerbi, 2016. "Early exercise premium method for pricing American options under the J-model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-26, December.
  11. Maya Briani & Lucia Caramellino & Antonino Zanette, 2013. "A hybrid approach for the implementation of the Heston model," Papers 1307.7178, arXiv.org, revised Sep 2017.
  12. Bertram During & James Miles, 2015. "High-order ADI scheme for option pricing in stochastic volatility models," Papers 1512.02529, arXiv.org.
  13. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
  14. Ma, Guiyuan & Zhu, Song-Ping & Chen, Wenting, 2019. "Pricing European call options under a hard-to-borrow stock model," Applied Mathematics and Computation, Elsevier, vol. 357(C), pages 243-257.
  15. Reza Mollapourasl & Ali Fereshtian & Michèle Vanmaele, 2019. "Radial Basis Functions with Partition of Unity Method for American Options with Stochastic Volatility," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 259-287, January.
  16. Jamal Amani Rad & Kourosh Parand & Saeid Abbasbandy, 2014. "Local weak form meshless techniques based on the radial point interpolation (RPI) method and local boundary integral equation (LBIE) method to evaluate European and American options," Papers 1412.6063, arXiv.org.
  17. Tinne Haentjens & Karel in 't Hout, 2013. "ADI schemes for pricing American options under the Heston model," Papers 1309.0110, arXiv.org.
  18. Golbabai, A. & Ballestra, L.V. & Ahmadian, D., 2013. "Superconvergence of the finite element solutions of the Black–Scholes equation," Finance Research Letters, Elsevier, vol. 10(1), pages 17-26.
  19. Carl Chiarella & Boda Kang & Gunter H. Meyer & Andrew Ziogas, 2009. "The Evaluation Of American Option Prices Under Stochastic Volatility And Jump-Diffusion Dynamics Using The Method Of Lines," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 393-425.
  20. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
  21. Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
  22. S. Dyrting, 2004. "Pricing equity options everywhere," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 663-676.
  23. Maya Briani & Lucia Caramellino & Antonino Zanette, 2017. "A hybrid approach for the implementation of the Heston model," Post-Print hal-00916440, HAL.
  24. Bertram During & Michel Fourni'e & Christof Heuer, 2014. "High-order compact finite difference schemes for option pricing in stochastic volatility models on non-uniform grids," Papers 1404.5138, arXiv.org.
  25. Maciej Balajewicz & Jari Toivanen, 2016. "Reduced Order Models for Pricing European and American Options under Stochastic Volatility and Jump-Diffusion Models," Papers 1612.00402, arXiv.org.
  26. Rambeerich, N. & Tangman, D.Y. & Lollchund, M.R. & Bhuruth, M., 2013. "High-order computational methods for option valuation under multifactor models," European Journal of Operational Research, Elsevier, vol. 224(1), pages 219-226.
  27. Medvedev, Alexey & Scaillet, Olivier, 2010. "Pricing American options under stochastic volatility and stochastic interest rates," Journal of Financial Economics, Elsevier, vol. 98(1), pages 145-159, October.
  28. Kozpınar, Sinem & Uzunca, Murat & Karasözen, Bülent, 2020. "Pricing European and American options under Heston model using discontinuous Galerkin finite elements," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 568-587.
  29. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
  30. Chinonso Nwankwo & Weizhong Dai, 2020. "Multigrid Iterative Algorithm based on Compact Finite Difference Schemes and Hermite interpolation for Solving Regime Switching American Options," Papers 2008.00925, arXiv.org, revised Nov 2021.
  31. Masahiro Nishiba, 2013. "Pricing Exotic Options and American Options: A Multidimensional Asymptotic Expansion Approach," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 20(2), pages 147-182, May.
  32. Karel in 't Hout & Jari Toivanen, 2015. "Application of Operator Splitting Methods in Finance," Papers 1504.01022, arXiv.org.
  33. Kenji Hamatani & Masao Fukushima, 2011. "Pricing American options with uncertain volatility through stochastic linear complementarity models," Computational Optimization and Applications, Springer, vol. 50(2), pages 263-286, October.
  34. Lynn Boen & Karel J. in 't Hout, 2019. "Operator splitting schemes for American options under the two-asset Merton jump-diffusion model," Papers 1912.06809, arXiv.org.
  35. Jamal Amani Rad & Kourosh Parand, 2014. "Numerical pricing of American options under two stochastic factor models with jumps using a meshless local Petrov-Galerkin method," Papers 1412.6064, arXiv.org.
  36. Ballestra, Luca Vincenzo & Pacelli, Graziella, 2013. "Pricing European and American options with two stochastic factors: A highly efficient radial basis function approach," Journal of Economic Dynamics and Control, Elsevier, vol. 37(6), pages 1142-1167.
  37. Persson, Jonas & von Sydow, Lina, 2010. "Pricing American options using a space-time adaptive finite difference method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(9), pages 1922-1935.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.