IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i4-part-2p1057-1078.html
   My bibliography  Save this article

Multigrid Techniques in Economics

Author

Listed:
  • Adam Speight

    (Computation Institute, University of Chicago, Chicago, Illinois)

Abstract

I present a self-contained introduction to multigrid methods with an emphasis on techniques relevant to dynamic programming and related problems. A probabilistic interpretation of the numerical principles is highlighted. Multigrid solvers are shown to be naturally matched to the challenges posed by intractable structural dynamic models routinely encountered in applied economics. I argue that multigrid techniques have potential to substantially extend the scale and complexity of models under consideration. Multigrid also provides a unified computational framework to extend model solvers to perform sensitivity analysis, calibration, estimation, and counterfactual policy experiments.

Suggested Citation

  • Adam Speight, 2010. "Multigrid Techniques in Economics," Operations Research, INFORMS, vol. 58(4-part-2), pages 1057-1078, August.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-2:p:1057-1078
    DOI: 10.1287/opre.1100.0834
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0834
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0834?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Basak, Suleyman & Cuoco, Domenico, 1998. "An Equilibrium Model with Restricted Stock Market Participation," The Review of Financial Studies, Society for Financial Studies, vol. 11(2), pages 309-341.
    2. H. M. Amman & D. A. Kendrick & J. Rust (ed.), 1996. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 1, number 1.
    3. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    4. Wilson, Robert, 1996. "Nonlinear pricing and mechanism design," Handbook of Computational Economics, in: H. M. Amman & D. A. Kendrick & J. Rust (ed.), Handbook of Computational Economics, edition 1, volume 1, chapter 5, pages 253-293, Elsevier.
    5. Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenneth Judd & Garrett van Ryzin, 2010. "Preface to the Special Issue on Computational Economics," Operations Research, INFORMS, vol. 58(4-part-2), pages 1035-1036, August.
    2. Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Chen & Jing Dong & Hao Ni, 2021. "ɛ-Strong Simulation of Fractional Brownian Motion and Related Stochastic Differential Equations," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 559-594, May.
    2. Bernard Dumas & Andrew Lyasoff, 2012. "Incomplete-Market Equilibria Solved Recursively on an Event Tree," Journal of Finance, American Finance Association, vol. 67(5), pages 1897-1941, October.
    3. Blueschke-Nikolaeva, V. & Blueschke, D. & Neck, R., 2012. "Optimal control of nonlinear dynamic econometric models: An algorithm and an application," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3230-3240.
    4. Basak, Suleyman & Croitoru, Benjamin, 2001. "Non-linear taxation, tax-arbitrage and equilibrium asset prices," Journal of Mathematical Economics, Elsevier, vol. 35(2), pages 347-382, April.
    5. Maurizio Iacopetta, 2014. "dynamics of assets liquidity and inequality in economies with decentralized markets," Working Papers hal-01099374, HAL.
    6. Luigi Guiso & Tullio Jappelli, 2005. "Awareness and Stock Market Participation," Review of Finance, European Finance Association, vol. 9(4), pages 537-567.
    7. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    8. Ahmed Kebaier & J'er^ome Lelong, 2015. "Coupling Importance Sampling and Multilevel Monte Carlo using Sample Average Approximation," Papers 1510.03590, arXiv.org, revised Jul 2017.
    9. Bertram During & Christian Hendricks & James Miles, 2016. "Sparse grid high-order ADI scheme for option pricing in stochastic volatility models," Papers 1611.01379, arXiv.org.
    10. Gromb, Denis & Vayanos, Dimitri, 2002. "Equilibrium and welfare in markets with financially constrained arbitrageurs," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 361-407.
    11. Chabakauri, Georgy, 2010. "Asset pricing with heterogeneous investors and portfolio constraints," LSE Research Online Documents on Economics 43142, London School of Economics and Political Science, LSE Library.
    12. Stéphane Crépey & Noufel Frikha & Azar Louzi & Gilles Pagès, 2023. "Asymptotic Error Analysis of Multilevel Stochastic Approximations for the Value-at-Risk and Expected Shortfall," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04304985, HAL.
    13. Anderson, Robert M. & Raimondo, Roberto C., 2007. "Equilibrium in Continuous-Time Financial Markets: Endogenously Dynamically Complete Markets," Department of Economics, Working Paper Series qt0zq6v5gd, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
    14. Harjoat S. Bhamra & Raman Uppal, 2014. "Asset Prices with Heterogeneity in Preferences and Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 27(2), pages 519-580.
    15. Wei Fang & Zhenru Wang & Michael B. Giles & Chris H. Jackson & Nicky J. Welton & Christophe Andrieu & Howard Thom, 2022. "Multilevel and Quasi Monte Carlo Methods for the Calculation of the Expected Value of Partial Perfect Information," Medical Decision Making, , vol. 42(2), pages 168-181, February.
    16. Amman, Hans M. & Kendrick, David A., 1998. "Computing the steady state of linear quadratic optimization models with rational expectations," Economics Letters, Elsevier, vol. 58(2), pages 185-191, February.
    17. John Stachurski, 2009. "Economic Dynamics: Theory and Computation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262012774, December.
    18. Zhiguo He & Arvind Krishnamurthy, 2013. "Intermediary Asset Pricing," American Economic Review, American Economic Association, vol. 103(2), pages 732-770, April.
    19. Kenneth L. Judd & Lilia Maliar & Serguei Maliar & Inna Tsener, 2017. "How to solve dynamic stochastic models computing expectations just once," Quantitative Economics, Econometric Society, vol. 8(3), pages 851-893, November.
    20. Sergey Ivashchenko & Semih Emre Çekin & Kevin Kotzé & Rangan Gupta, 2020. "Forecasting with Second-Order Approximations and Markov-Switching DSGE Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 747-771, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-2:p:1057-1078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.