IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i4p793-809.html
   My bibliography  Save this article

American Options Under Stochastic Volatility

Author

Listed:
  • Arun Chockalingam

    (School of Industrial Engineering, Purdue University, West Lafayette, Indiana 47907)

  • Kumar Muthuraman

    (McCombs School of Business, The University of Texas at Austin, Austin, Texas 78712)

Abstract

The problem of pricing an American option written on an underlying asset with constant price volatility has been studied extensively in literature. Real-world data, however, demonstrate that volatility is not constant, and stochastic volatility models are used to account for dynamic volatility changes. Option pricing methods that have been developed in literature for pricing under stochastic volatility focus mostly on European options. We consider the problem of pricing American options under stochastic volatility, which has had relatively much less attention from literature. First, we develop a transformation procedure to compute the optimal-exercise policy and option price and provide theoretical guarantees for convergence. Second, using this computational tool, we explore a variety of questions that seek insights into the dependence of option prices, exercise policies, and implied volatilities on the market price of volatility risk and correlation between the asset and stochastic volatility. The speed and accuracy of the procedure are compared against existing methods as well.

Suggested Citation

  • Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:4:p:793-809
    DOI: 10.1287/opre.1110.0945
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1110.0945
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1110.0945?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Vicky Henderson, 2005. "Analytical Comparisons Of Option Prices In Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 49-59, January.
    4. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    5. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    6. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    7. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    8. Sunil Kumar & Kumar Muthuraman, 2004. "A Numerical Method for Solving Singular Stochastic Control Problems," Operations Research, INFORMS, vol. 52(4), pages 563-582, August.
    9. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-572.
    10. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    11. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    12. Kumar Muthuraman & Sunil Kumar, 2006. "Multidimensional Portfolio Optimization With Proportional Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 301-335, April.
    13. Nigel Clarke & Kevin Parrott, 1999. "Multigrid for American option pricing with stochastic volatility," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(3), pages 177-195.
    14. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    15. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    16. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    17. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    18. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    19. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    20. Ball, Clifford A. & Roma, Antonio, 1994. "Stochastic Volatility Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 589-607, December.
    21. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    22. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    23. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    24. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    25. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14, April.
    26. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junkee Jeon & Jeonggyu Huh & Kyunghyun Park, 2020. "An Analytic Approximation for Valuation of the American Option Under the Heston Model in Two Regimes," Computational Economics, Springer;Society for Computational Economics, vol. 56(2), pages 499-528, August.
    2. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan, 2021. "Valuing Switching options with the moving-boundary method," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    3. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    4. Chinonso I. Nwankwo & Weizhong Dai & Ruihua Liu, 2023. "Compact Finite Difference Scheme with Hermite Interpolation for Pricing American Put Options Based on Regime Switching Model," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 817-854, October.
    5. Chockalingam, Arun & Feng, Haolin, 2015. "The implication of missing the optimal-exercise time of an American option," European Journal of Operational Research, Elsevier, vol. 243(3), pages 883-896.
    6. Ma, Jingtang & Yang, Wensheng & Cui, Zhenyu, 2021. "CTMC integral equation method for American options under stochastic local volatility models," Journal of Economic Dynamics and Control, Elsevier, vol. 128(C).
    7. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.
    8. Warren J. Hahn & James S. Dyer, 2011. "A Discrete Time Approach for Modeling Two-Factor Mean-Reverting Stochastic Processes," Decision Analysis, INFORMS, vol. 8(3), pages 220-232, September.
    9. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Dabadghao, Shaunak S. & Chockalingam, Arun & Soltani, Taimaz & Fransoo, Jan C., 2021. "Valuing switching options with the moving-boundary method," Other publications TiSEM 45fe7e78-129f-4d41-ac2f-5, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    4. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    5. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    6. Broadie, Mark & Detemple, Jerome & Ghysels, Eric & Torres, Olivier, 2000. "American options with stochastic dividends and volatility: A nonparametric investigation," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 53-92.
    7. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    8. Chockalingam, Arun & Feng, Haolin, 2015. "The implication of missing the optimal-exercise time of an American option," European Journal of Operational Research, Elsevier, vol. 243(3), pages 883-896.
    9. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    10. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 12, July-Dece.
    11. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    12. Chockalingam, Arun & Muthuraman, Kumar, 2015. "An approximate moving boundary method for American option pricing," European Journal of Operational Research, Elsevier, vol. 240(2), pages 431-438.
    13. Jonathan Ziveyi, 2011. "The Evaluation of Early Exercise Exotic Options," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 2-2011.
    14. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    15. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    16. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    17. Weiping Li & Su Chen, 2018. "The Early Exercise Premium In American Options By Using Nonparametric Regressions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-29, November.
    18. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    19. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    20. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:4:p:793-809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.