IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v16y2006i2p301-335.html
   My bibliography  Save this article

Multidimensional Portfolio Optimization With Proportional Transaction Costs

Author

Listed:
  • Kumar Muthuraman
  • Sunil Kumar

Abstract

We provide a computational study of the problem of optimally allocating wealth among multiple stocks and a bank account, to maximize the infinite horizon discounted utility of consumption. We consider the situation where the transfer of wealth from one asset to another involves transaction costs that are proportional to the amount of wealth transferred. Our model allows for correlation between the price processes, which in turn gives rise to interesting hedging strategies. This results in a stochastic control problem with both drift‐rate and singular controls, which can be recast as a free boundary problem in partial differential equations. Adapting the finite element method and using an iterative procedure that converts the free boundary problem into a sequence of fixed boundary problems, we provide an efficient numerical method for solving this problem. We present computational results that describe the impact of volatility, risk aversion of the investor, level of transaction costs, and correlation among the risky assets on the structure of the optimal policy. Finally we suggest and quantify some heuristic approximations.

Suggested Citation

  • Kumar Muthuraman & Sunil Kumar, 2006. "Multidimensional Portfolio Optimization With Proportional Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 301-335, April.
  • Handle: RePEc:bla:mathfi:v:16:y:2006:i:2:p:301-335
    DOI: 10.1111/j.1467-9965.2006.00273.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2006.00273.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2006.00273.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:16:y:2006:i:2:p:301-335. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.