IDEAS home Printed from
   My bibliography  Save this article

Systemic risk components and deposit insurance premia


  • Jeremy Staum


In light of recent events, there have been proposals to establish a theory of financial system risk management analogous to portfolio risk management. One important aspect of portfolio risk management is risk attribution, the process of decomposing a risk measure into components that are attributed to individual assets or activities. The theory of portfolio risk attribution has limited applicability to systemic risk because systems can have richer structure than portfolios. This article contributes to the theory of systemic risk attribution and illuminates the design process for systemic risk attribution by developing some schemes for attributing systemic risk in an application to deposit insurance.

Suggested Citation

  • Jeremy Staum, 2012. "Systemic risk components and deposit insurance premia," Quantitative Finance, Taylor & Francis Journals, vol. 12(4), pages 651-662, January.
  • Handle: RePEc:taf:quantf:v:12:y:2012:i:4:p:651-662 DOI: 10.1080/14697688.2012.664942

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Torben G. Andersen & Dobrislav Dobrev & Ernst Schaumburg, 2011. "A Functional Filtering and Neighborhood Truncation Approach to Integrated Quarticity Estimation," NBER Working Papers 17152, National Bureau of Economic Research, Inc.
    2. Corsi, Fulvio & Pirino, Davide & Renò, Roberto, 2010. "Threshold bipower variation and the impact of jumps on volatility forecasting," Journal of Econometrics, Elsevier, vol. 159(2), pages 276-288, December.
    3. Jacod, Jean & Li, Yingying & Mykland, Per A. & Podolskij, Mark & Vetter, Mathias, 2009. "Microstructure noise in the continuous case: The pre-averaging approach," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2249-2276, July.
    4. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters,in: Theory Of Valuation, chapter 5, pages 129-164 World Scientific Publishing Co. Pte. Ltd..
    5. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    6. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    7. Jiang, George J. & Oomen, Roel C.A., 2008. "Testing for jumps when asset prices are observed with noise-a "swap variance" approach," Journal of Econometrics, Elsevier, vol. 144(2), pages 352-370, June.
    8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    9. Ole E. Barndorff-Nielsen & Shephard, 2002. "Econometric analysis of realized volatility and its use in estimating stochastic volatility models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 253-280.
    10. Vetter, Mathias & Podolskij, Mark, 2006. "Estimation of Volatility Functionals in the Simultaneous Presence of Microstructure Noise and Jumps," Technical Reports 2006,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    11. Jim Gatheral & Roel Oomen, 2010. "Zero-intelligence realized variance estimation," Finance and Stochastics, Springer, vol. 14(2), pages 249-283, April.
    12. Maria Elvira Mancino & Simona Sanfelici, 2011. "Estimating Covariance via Fourier Method in the Presence of Asynchronous Trading and Microstructure Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(2), pages 367-408, Spring.
    13. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
    14. Mancino, M.E. & Sanfelici, S., 2008. "Robustness of Fourier estimator of integrated volatility in the presence of microstructure noise," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2966-2989, February.
    15. Maria Elvira Mancino & Paul Malliavin, 2002. "Fourier series method for measurement of multivariate volatilities," Finance and Stochastics, Springer, vol. 6(1), pages 49-61.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Pilar Gómez-Fernández-Aguado & Antonio Partal-Ureña & Antonio Trujillo-Ponce, 2013. "Evaluating the effects of the EU directive proposal for risk-based deposit insurance premiums in Spain," Working Papers 13.01, Universidad Pablo de Olavide, Department of Financial Economics and Accounting (former Department of Business Administration).
    2. Jose Fique, 2016. "A Microfounded Design of Interconnectedness-Based Macroprudential Policy," Staff Working Papers 16-6, Bank of Canada.
    3. Jose Fique, 2015. "A Microfounded Design of Interconnectedness-Based Macroprudential Regulation," Caepr Working Papers 2015-008 Classification-D, Center for Applied Economics and Policy Research, Economics Department, Indiana University Bloomington.
    4. Mainik Georg & Schaanning Eric, 2014. "On dependence consistency of CoVaRand some other systemic risk measures," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 1-29, March.
    5. Drehmann, Mathias & Tarashev, Nikola, 2013. "Measuring the systemic importance of interconnected banks," Journal of Financial Intermediation, Elsevier, vol. 22(4), pages 586-607.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:12:y:2012:i:4:p:651-662. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.