IDEAS home Printed from https://ideas.repec.org/a/taf/marpmg/v38y2011i6p605-632.html
   My bibliography  Save this article

Failure modes in the maritime transportation system: a functional approach to throughput vulnerability

Author

Listed:
  • Øyvind Berle
  • James B. Rice Jr.
  • Bjørn Egil Asbørnslett

Abstract

Maritime Transportation Systems (MTSs) are essential for world trade; it is crucial to understand how these systems may fail, to be able to maintain their capacity. In this paper, the MTS is seen as a throughput mechanism; a technical system which serves its purpose by moving goods for its dependents. Understanding which key functions and capabilities are prerequisite for the ability to move goods, the loss of which are the failure modes, allows for the creation of a ‘business continuity plan’ for the MTS. Through two surveys and interviews with maritime transportation industry stakeholders, it was observed that while stakeholders in the industry have a solid focus on frequent operational risks, there is a lack of awareness of vulnerabilities, as well as methods for addressing and planning for low-frequency high-impact disruption scenarios. The presented approach provides a structured set of matrices of the key functions of the MTS, allowing stakeholders to increase the system's resilience through preparing to restore this limited number of critical functions.

Suggested Citation

  • Øyvind Berle & James B. Rice Jr. & Bjørn Egil Asbørnslett, 2011. "Failure modes in the maritime transportation system: a functional approach to throughput vulnerability," Maritime Policy & Management, Taylor & Francis Journals, vol. 38(6), pages 605-632, March.
  • Handle: RePEc:taf:marpmg:v:38:y:2011:i:6:p:605-632
    DOI: 10.1080/03088839.2011.615870
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/03088839.2011.615870
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/03088839.2011.615870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yossi Sheffi, 2005. "The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262693496, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Honglu & Tian, Zhihong & Huang, Anqiang & Yang, Zaili, 2018. "Analysis of vulnerabilities in maritime supply chains," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 475-484.
    2. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Post-Print halshs-02588551, HAL.
    3. Jasper Verschuur & Raghav Pant & Elco Koks & Jim Hall, 2022. "A systemic risk framework to improve the resilience of port and supply-chain networks to natural hazards," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 24(3), pages 489-506, September.
    4. Xueni Gou & Jasmine Siu Lee Lam, 2019. "Risk analysis of marine cargoes and major port disruptions," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 21(4), pages 497-523, December.
    5. Laure Rousset & César Ducruet, 2020. "Disruptions in Spatial Networks: a Comparative Study of Major Shocks Affecting Ports and Shipping Patterns," Networks and Spatial Economics, Springer, vol. 20(2), pages 423-447, June.
    6. Kuźmicz Katarzyna Anna, 2022. "Impact of the COVID-19 Pandemic Disruptions on Container Transport," Engineering Management in Production and Services, Sciendo, vol. 14(2), pages 106-115, June.
    7. Panahi, Roozbeh & Ng, Adolf K.Y. & Pang, Jiayi, 2020. "Climate change adaptation in the port industry: A complex of lingering research gaps and uncertainties," Transport Policy, Elsevier, vol. 95(C), pages 10-29.
    8. HOSSAIN, Niamat Ullah Ibne & Amrani, Safae El & Jaradat, Raed & Marufuzzaman, Mohammad & Buchanan, Randy & Rinaudo, Christina & Hamilton, Michael, 2020. "Modeling and assessing interdependencies between critical infrastructures using Bayesian network: A case study of inland waterway port and surrounding supply chain network," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Wan, Chengpeng & Yan, Xinping & Zhang, Di & Qu, Zhuohua & Yang, Zaili, 2019. "An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 222-240.
    10. Chen, Hong & Lam, Jasmine Siu Lee & Liu, Nan, 2018. "Strategic investment in enhancing port–hinterland container transportation network resilience: A network game theory approach," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 83-112.
    11. César Ducruet, 2016. "The polarization of global container flows by interoceanic canals: geographic coverage and network vulnerability," Post-Print halshs-00749639, HAL.
    12. Guangying Jin & Wei Feng & Qingpu Meng, 2022. "Prediction of Waterway Cargo Transportation Volume to Support Maritime Transportation Systems Based on GA-BP Neural Network Optimization," Sustainability, MDPI, vol. 14(21), pages 1-24, October.
    13. Liu, Yang & Ma, Xiaoxue & Qiao, Weiliang & Ma, Laihao & Han, Bing, 2024. "A novel methodology to model disruption propagation for resilient maritime transportation systems–a case study of the Arctic maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Randrianarisoa, Laingo M. & Zhang, Anming, 2019. "Adaptation to climate change effects and competition between ports: Invest now or later?," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 279-322.
    15. Wang, Nanxi & Wu, Min & Yuen, Kum Fai, 2023. "Assessment of port resilience using Bayesian network: A study of strategies to enhance readiness and response capacities," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Lam, Jasmine Siu Lee & Bai, Xiwen, 2016. "A quality function deployment approach to improve maritime supply chain resilience," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 92(C), pages 16-27.
    17. Balakrishnan, Srijith & Lim, Taehoon & Zhang, Zhanmin, 2022. "A methodology for evaluating the economic risks of hurricane-related disruptions to port operations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 162(C), pages 58-79.
    18. Hossain, Niamat Ullah Ibne & Nur, Farjana & Hosseini, Seyedmohsen & Jaradat, Raed & Marufuzzaman, Mohammad & Puryear, Stephen M., 2019. "A Bayesian network based approach for modeling and assessing resilience: A case study of a full service deep water port," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 378-396.
    19. Liu, Qing & Yang, Yang & Ng, Adolf K.Y. & Jiang, Changmin, 2023. "An analysis on the resilience of the European port network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aziz Barhmi & Omar Hajaji, 2023. "Multidisciplinary Approach to Supply Chain Resilience: Conceptualization and Scale Development," Central European Business Review, Prague University of Economics and Business, vol. 2023(5), pages 43-69.
    2. Xiang Li, 2017. "Optimal procurement strategies from suppliers with random yield and all-or-nothing risks," Annals of Operations Research, Springer, vol. 257(1), pages 167-181, October.
    3. Tang, Liang & Jing, Ke & He, Jie & Stanley, H. Eugene, 2016. "Robustness of assembly supply chain networks by considering risk propagation and cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 459(C), pages 129-139.
    4. Monika Winn & Manfred Kirchgeorg & Andrew Griffiths & Martina K. Linnenluecke & Elmar Günther, 2011. "Impacts from climate change on organizations: a conceptual foundation," Business Strategy and the Environment, Wiley Blackwell, vol. 20(3), pages 157-173, March.
    5. Sulfikar Amir & Vivek Kant, 2018. "Sociotechnical Resilience: A Preliminary Concept," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 8-16, January.
    6. Zeng, Zhiguo & Fang, Yi-Ping & Zhai, Qingqing & Du, Shijia, 2021. "A Markov reward process-based framework for resilience analysis of multistate energy systems under the threat of extreme events," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Andres F. Jola-Sanchez & Juan Camilo Serpa, 2021. "Inventory in Times of War," Management Science, INFORMS, vol. 67(10), pages 6457-6479, October.
    8. Kevin B. Hendricks & Manpreet Hora & Vinod R. Singhal, 2015. "An Empirical Investigation on the Appointments of Supply Chain and Operations Management Executives," Management Science, INFORMS, vol. 61(7), pages 1562-1583, July.
    9. Bernhard Fietz & Julia Hillmann & Edeltraud Guenther, 2021. "Cultural Effects on Organizational Resilience: Evidence from the NAFTA Region," Schmalenbach Journal of Business Research, Springer, vol. 73(1), pages 5-46, March.
    10. Chowdhury, Md Maruf H. & Quaddus, Mohammed, 2017. "Supply chain resilience: Conceptualization and scale development using dynamic capability theory," International Journal of Production Economics, Elsevier, vol. 188(C), pages 185-204.
    11. Brice Foulon & Sylvain Marsat, 2023. "Does environmental footprint influence the resilience of firms facing environmental penalties?," Business Strategy and the Environment, Wiley Blackwell, vol. 32(8), pages 6154-6168, December.
    12. Malin Arve & Claudine Desrieux & Romain Espinosa, 2023. "Entrepreneurial intention and resilience: An experiment during the Covid‐19 lockdown," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 44(2), pages 698-715, March.
    13. Berle, Øyvind & Asbjørnslett, Bjørn Egil & Rice, James B., 2011. "Formal Vulnerability Assessment of a maritime transportation system," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 696-705.
    14. Gel, Esma S. & Salman, F. Sibel, 2022. "Dynamic ordering decisions with approximate learning of supply yield uncertainty," International Journal of Production Economics, Elsevier, vol. 243(C).
    15. Dowty, Rachel A. & Wallace, William A., 2010. "Implications of organizational culture for supply chain disruption and restoration," International Journal of Production Economics, Elsevier, vol. 126(1), pages 57-65, July.
    16. D Gade & E A Pohl, 2009. "Sample average approximation applied to the capacitated-facilities location problem with unreliable facilities," Journal of Risk and Reliability, , vol. 223(4), pages 259-269, December.
    17. Sylwia Konecka & Wojciech Machowiak, 2011. "Risk management and critical situations in supply chains (Zarzadzanie ryzykiem i sytuacje kryzysowe w lancuchach dostaw)," Problemy Zarzadzania, University of Warsaw, Faculty of Management, vol. 9(31), pages 99-122.
    18. Hong, Seock-Jin & Savoie, Michael & Joiner, Steve & Kincaid, Timothy, 2022. "Analysis of airline employees’ perceptions of corporate preparedness for COVID-19 disruptions to airline operations," Transport Policy, Elsevier, vol. 119(C), pages 45-55.
    19. Rameshwar Dubey & Tripti Singh & Omprakash K. Gupta, 2015. "Impact of Agility, Adaptability and Alignment on Humanitarian Logistics Performance: Mediating Effect of Leadership," Global Business Review, International Management Institute, vol. 16(5), pages 812-831, October.
    20. Scott DuHadway & Steven Carnovale & Benjamin Hazen, 2019. "Understanding risk management for intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery," Annals of Operations Research, Springer, vol. 283(1), pages 179-198, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:marpmg:v:38:y:2011:i:6:p:605-632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/TMPM20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.