IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v30y2003i10p1161-1184.html
   My bibliography  Save this article

Automatic selective intervention in dynamic linear models

Author

Listed:
  • Manuel Salvador
  • Pilar Gargallo

Abstract

In this paper we propose an algorithm to carry out the monitoring and retrospective intervention process in Dynamic Linear Models, both selectively and automatically. The algorithm is illustrated by analysing several series taken from the literature, in which the proposed procedure is shown to perform better than the scheme proposed by West & Harrison (1997, Chapter 11).

Suggested Citation

  • Manuel Salvador & Pilar Gargallo, 2003. "Automatic selective intervention in dynamic linear models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1161-1184.
  • Handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1161-1184
    DOI: 10.1080/0266476032000107178
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0266476032000107178
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/0266476032000107178?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    2. P. J. Harrison, 1999. "Statistical process control and model monitoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(2), pages 273-292.
    3. Harvey, A. C., 1986. "The effects of seat belt legislation on British road casualities: A case study in structural modelling : A.C. Harvey and J. Durbing, Journal of the Royal Statistical Society, Series A 149 (1986) (in p," International Journal of Forecasting, Elsevier, vol. 2(4), pages 496-497.
    4. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kapetanios, G. & Tzavalis, E., 2010. "Modeling structural breaks in economic relationships using large shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 34(3), pages 417-436, March.
    2. Atkinson, A. C. & Koopman, S. J. & Shephard, N., 1997. "Detecting shocks: Outliers and breaks in time series," Journal of Econometrics, Elsevier, vol. 80(2), pages 387-422, October.
    3. Victor Guerrero, 2005. "Restricted estimation of an adjusted time series: application to Mexico's industrial production index," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(2), pages 157-177.
    4. Marczak, Martyna & Proietti, Tommaso, 2016. "Outlier detection in structural time series models: The indicator saturation approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 180-202.
    5. Berlin Wu & Liyang Chen, 2006. "Use of Partial Cumulative Sum to Detect Trends and Change Periods for Nonlinear Time Series," Journal of Economics and Management, College of Business, Feng Chia University, Taiwan, vol. 2(2), pages 123-145, July.
    6. Amélie Charles & Olivier Darné & Laurent Ferrara, 2018. "Does The Great Recession Imply The End Of The Great Moderation? International Evidence," Economic Inquiry, Western Economic Association International, vol. 56(2), pages 745-760, April.
    7. Jussi Tolvi, 2001. "Outliers in eleven Finnish macroeconomic time series," Finnish Economic Papers, Finnish Economic Association, vol. 14(1), pages 14-32, Spring.
    8. Salvatore Fasola & Vito M. R. Muggeo & Helmut Küchenhoff, 2018. "A heuristic, iterative algorithm for change-point detection in abrupt change models," Computational Statistics, Springer, vol. 33(2), pages 997-1015, June.
    9. repec:hum:wpaper:sfb649dp2006-050 is not listed on IDEAS
    10. Beatriz Catalan & F. Javier Trivez, 2007. "Forecasting volatility in GARCH models with additive outliers," Quantitative Finance, Taylor & Francis Journals, vol. 7(6), pages 591-596.
    11. Tommaso Proietti, 2003. "Leave‐K‐Out Diagnostics In State‐Space Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 221-236, March.
    12. Olivier Darné & Amélie Charles, 2011. "Large shocks in U.S. macroeconomic time series: 1860-1988," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 5(1), pages 79-100, January.
    13. Junttila, Juha, 2001. "Structural breaks, ARIMA model and Finnish inflation forecasts," International Journal of Forecasting, Elsevier, vol. 17(2), pages 203-230.
    14. Naci H. Mocan & Kudret Topyan, 1993. "Illicit Drug Use and Health: Analysis and Projections of New York City Birth Outcomes Using a Kalman Filter Model," NBER Working Papers 4359, National Bureau of Economic Research, Inc.
    15. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    16. Amélie Charles & Olivier Darné, 2021. "Econometric history of the growth–volatility relationship in the USA: 1919–2017," Cliometrica, Journal of Historical Economics and Econometric History, Association Française de Cliométrie (AFC), vol. 15(2), pages 419-442, May.
    17. Marco BIANCHI, "undated". "A simple and fast method of regime shifts detection based on kernel density estimation," Statistic und Oekonometrie 9316, Humboldt Universitaet Berlin.
    18. Oesterreich Maciej, 2020. "On the Method of Identification of Atypical Observations in Time Series," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 24(2), pages 1-16, June.
    19. Ooms, M. & Franses, Ph.H.B.F., 1998. "A seasonal periodic long memory model for monthly river flows," Econometric Institute Research Papers EI 9842, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    21. Ole E. Barndorff-Nielsen & Bent Nielsen & Neil Shephard & Carla Ysusi, 2002. "Measuring and forecasting financial variability using realised variance with and without a model," Economics Papers 2002-W21, Economics Group, Nuffield College, University of Oxford.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:30:y:2003:i:10:p:1161-1184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.