IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Use of Partial Cumulative Sum to Detect Trends and Change Periods for Nonlinear Time Series

Listed author(s):
  • Berlin Wu

    (Department of Mathematics, National Chengchi University, Taiwan)

  • Liyang Chen

    (Department of Mathematics, National Chengchi University, Taiwan)

Registered author(s):

    Because the structural change of a time series from one pattern to another may not switch at once but rather experience a period of adjustment, conventional change point detection may be inappropriate under some circumstances. Furthermore, changes in time series often occur gradually so that there is a certain amount of fuzziness in the change point. For this, considerable research has focused on the theory of change period detection for improved model performance. However, a change period in some small time interval may appear to be negligible noise in a larger time interval. In this paper, we propose an approach to detect trends and change periods with fuzzy statistics using partial cumulative sums. By controlling the parameters, we can filter the noises and discover suitable change periods. Having discovered the change periods, we can proceed to identify the trends in the time series. We use simulations to test our approach. Our results show that the performance of our approach is satisfactory.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    File URL:
    Download Restriction: no

    Article provided by College of Business, Feng Chia University, Taiwan in its journal Journal of Economics and Management.

    Volume (Year): 2 (2006)
    Issue (Month): 2 (July)
    Pages: 123-145

    in new window

    Handle: RePEc:jec:journl:v:2:y:2006:i:2:p:123-145
    Contact details of provider: Postal:
    100 Wenhwa Road, Seatwen, Taichung

    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Van Cutsem, Bernard & Gath, Isak, 1993. "Detection of outliers and robust estimation using fuzzy clustering," Computational Statistics & Data Analysis, Elsevier, vol. 15(1), pages 47-61, January.
    2. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    3. Balke, Nathan S, 1993. "Detecting Level Shifts in Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 81-92, January.
    4. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:jec:journl:v:2:y:2006:i:2:p:123-145. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Yi-Ju Su)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.