IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v37y2005i8p901-903.html
   My bibliography  Save this article

Is inflation stationary?

Author

Listed:
  • Wojciech Charemza
  • Daniela Hristova
  • Peter Burridge

Abstract

Ninety-three world-wide inflation series are tested for unit roots. Treating the data series' innovations as draws from a symmetric stable distribution, with possibly infinite variance, reduces the number that appear stationary.

Suggested Citation

  • Wojciech Charemza & Daniela Hristova & Peter Burridge, 2005. "Is inflation stationary?," Applied Economics, Taylor & Francis Journals, vol. 37(8), pages 901-903.
  • Handle: RePEc:taf:applec:v:37:y:2005:i:8:p:901-903
    DOI: 10.1080/00036840500076721
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/00036840500076721
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ng, S. & Perron, P., 1994. "Unit Root Tests ARMA Models with Data Dependent Methods for the Selection of the Truncation Lag," Cahiers de recherche 9423, Universite de Montreal, Departement de sciences economiques.
    2. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    3. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    4. Chan, Ngai Hang & Tran, Lanh Tat, 1989. "On the First-Order Autoregressive Process with Infinite Variance," Econometric Theory, Cambridge University Press, vol. 5(03), pages 354-362, December.
    5. Hall, Alastair R, 1994. "Testing for a Unit Root in Time Series with Pretest Data-Based Model Selection," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 461-470, October.
    6. James G. MacKinnon, 1990. "Critical Values for Cointegration Tests," Working Papers 1227, Queen's University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:37:y:2005:i:8:p:901-903. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.