IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v36y2004i20p2347-2356.html
   My bibliography  Save this article

Forecasting UK commercial real estate cycle phases with leading indicators: a probit approach

Author

Listed:
  • Alexandra Krystalogianni
  • George Matysiak
  • Sotiris Tsolacos

Abstract

This paper examines the significance of widely used leading indicators of the UK economy for predicting the cyclical pattern of commercial real estate performance. The analysis uses monthly capital value data for UK industrials, offices and retail from the Investment Property Databank (IPD). Prospective economic indicators are drawn from three sources namely, the series used by the US Conference Board to construct their UK leading indicator and the series deployed by two private organisations, Lombard Street Research and NTC Research, to predict UK economic activity. We first identify turning points in the capital value series adopting techniques employed in the classical business cycle literature. Probit models are then estimated using the leading economic indicators as independent variables and forecast the probability of different phases of capital values, that is, periods of declining and rising capital values. The forecast performance of the models is tested and found to be satisfactory. The predictability of lasting directional changes in property performance represents a useful tool for real estate investment decision-making.

Suggested Citation

  • Alexandra Krystalogianni & George Matysiak & Sotiris Tsolacos, 2004. "Forecasting UK commercial real estate cycle phases with leading indicators: a probit approach," Applied Economics, Taylor & Francis Journals, vol. 36(20), pages 2347-2356.
  • Handle: RePEc:taf:applec:v:36:y:2004:i:20:p:2347-2356
    DOI: 10.1080/0003684042000280544
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/0003684042000280544
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lawrence J. Christiano & Terry J. Fitzgerald, 1998. "The business cycle: it's still a puzzle," Economic Perspectives, Federal Reserve Bank of Chicago, issue Q IV, pages 56-83.
    2. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    4. Hodrick, Robert J & Prescott, Edward C, 1997. "Postwar U.S. Business Cycles: An Empirical Investigation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 29(1), pages 1-16, February.
    5. Bryan Boulier & H. O. Stekler, 2001. "The term spread as a cyclical indicator: a forecasting evaluation," Applied Financial Economics, Taylor & Francis Journals, vol. 11(4), pages 403-409.
    6. King, Robert G. & Plosser, Charles I., 1994. "Real business cycles and the test of the Adelmans," Journal of Monetary Economics, Elsevier, vol. 33(2), pages 405-438, April.
    7. King, Robert G. & Rebelo, Sergio T., 1993. "Low frequency filtering and real business cycles," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 207-231.
    8. Gerhard Bry & Charlotte Boschan, 1971. "Cyclical Analysis of Time Series: Selected Procedures and Computer Programs," NBER Books, National Bureau of Economic Research, Inc, number bry_71-1, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chun-Chang Lee & Chih-Min Liang & Hsing-Jung Chou, 2013. "Identifying Taiwan real estate cycle turning points- An application of the multivariate Markov-switching autoregressive Model," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 3(2), pages 1-1.
    2. Hyejung Moon & Jungick Lee, 2013. "Forecast evaluation of economic sentiment indicator for the Korean economy," IFC Bulletins chapters,in: Bank for International Settlements (ed.), Proceedings of the Sixth IFC Conference on "Statistical issues and activities in a changing environment", Basel, 28-29 August 2012., volume 36, pages 180-190 Bank for International Settlements.
    3. Gelper, S. & Lemmens, A. & Croux, C., 2007. "Consumer sentiment and consumer spending : Decomposing the granger causal relationship in the time domain," Other publications TiSEM 55ac7230-2985-41f1-a42c-7, Tilburg University, School of Economics and Management.
    4. Fuerst, Franz, 2007. "Office Rent Determinants: A Hedonic Panel Analysis," MPRA Paper 11445, University Library of Munich, Germany.
    5. Dimitrios Papastamos & George Matysiak & Simon Stevenson, 2014. "A Comparative Analysis of the Accuracy and Uncertainty in Real Estate and Macroeconomic Forecasts," Real Estate & Planning Working Papers rep-wp2014-06, Henley Business School, Reading University.
    6. repec:ire:issued:v:20:n:04:2017:p:417-450 is not listed on IDEAS
    7. Yun-Ling Wu & Cheng-Huang Tung & Chun-Chang Lee, 2017. "The Power of a Leading Indicators Fluctuation Trend for Forecasting Taiwans Real Estate Business Cycle: An Application of a Hidden Markov Model," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 7(1), pages 81-98, January.
    8. Horváth, Áron & Sápi, Zoltán & Révész, Gábor, 2016. "Irodapiaci ciklusok jellemzése a hozam, a bérleti forgalom, az üresedés, a bérleti díjak és az új átadás alapján
      [Yields, take-up, vacancy, rents and new supply during office-market cycles]
      ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(2), pages 113-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:36:y:2004:i:20:p:2347-2356. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.