IDEAS home Printed from https://ideas.repec.org/a/spt/apfiba/v14y2024i6f14_6_6.html
   My bibliography  Save this article

A Darwinian Approach via ML to the Analysis of Cryptocurrencies’ Returns

Author

Listed:
  • Federico Cini
  • Annalisa Ferrari

Abstract

This study adopts a Darwinian approach leveraging machine learning (ML) to analyze cryptocurrency returns and their interactions with traditional financial markets. Using a daily dataset from 2018 to 2023, the Random Forest model proved particularly effective in identifying key factors influencing cryptocurrency returns, including technology stock indices (NASDAQ), global equity indices (S&P500, Eurostoxx600), commodity prices (gold, crude oil), and market sentiment (Google Trends). The analysis reveals consistent positive relationships between market sentiment and cryptocurrency returns, highlighting the crucial role of public interest in shaping long-term outcomes. Cryptocurrencies emerge as a distinct asset class with specific correlations to traditional markets and investor sentiment. The study provides strategic insights into understanding cryptocurrency behavior and integrating these dynamics into informed portfolio strategies. It emphasizes the importance of monitoring both traditional financial indices and market sentiment for investment decisions across various time horizons. Â JEL classification numbers: C58, G11, G15.

Suggested Citation

  • Federico Cini & Annalisa Ferrari, 2024. "A Darwinian Approach via ML to the Analysis of Cryptocurrencies’ Returns," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 14(6), pages 1-6.
  • Handle: RePEc:spt:apfiba:v:14:y:2024:i:6:f:14_6_6
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JAFB%2fVol%2014_6_6.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salisu, Afees A. & Akanni, Lateef & Raheem, Ibrahim, 2020. "The COVID-19 global fear index and the predictability of commodity price returns," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    2. Zhi Da & Joseph Engelberg & Pengjie Gao, 2015. "Editor's Choice The Sum of All FEARS Investor Sentiment and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 28(1), pages 1-32.
    3. Aniruddha Dutta & Saket Kumar & Meheli Basu, 2020. "A Gated Recurrent Unit Approach to Bitcoin Price Prediction," JRFM, MDPI, vol. 13(2), pages 1-16, February.
    4. Daniel Traian Pele & Niels Wesselhöfft & Wolfgang Karl Härdle & Michalis Kolossiatis & Yannis G. Yatracos, 2023. "Are cryptos becoming alternative assets?," The European Journal of Finance, Taylor & Francis Journals, vol. 29(10), pages 1064-1105, July.
    5. Urquhart, Andrew, 2018. "What causes the attention of Bitcoin?," Economics Letters, Elsevier, vol. 166(C), pages 40-44.
    6. Sabrina T Howell & Marina Niessner & David Yermack & Jiang Wei, 2020. "Initial Coin Offerings: Financing Growth with Cryptocurrency Token Sales," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 3925-3974.
    7. Brauneis, Alexander & Mestel, Roland & Riordan, Ryan & Theissen, Erik, 2021. "How to measure the liquidity of cryptocurrency markets?," Journal of Banking & Finance, Elsevier, vol. 124(C).
    8. Tarchella, Salma & Khalfaoui, Rabeh & Hammoudeh, Shawkat, 2024. "The safe haven, hedging, and diversification properties of oil, gold, and cryptocurrency for the G7 equity markets: Evidence from the pre- and post-COVID-19 periods," Research in International Business and Finance, Elsevier, vol. 67(PB).
    9. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
    10. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    11. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    12. Almeida, José & Gonçalves, Tiago Cruz, 2023. "A systematic literature review of investor behavior in the cryptocurrency markets," Journal of Behavioral and Experimental Finance, Elsevier, vol. 37(C).
    13. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    14. Jean-Marc Figuet, 2016. "Bitcoin et blockchain : quelles opportunités ?," Revue d'économie financière, Association d'économie financière, vol. 0(3), pages 325-338.
    15. Wenjun Feng & Yiming Wang & Zhengjun Zhang, 2018. "Can cryptocurrencies be a safe haven: a tail risk perspective analysis," Applied Economics, Taylor & Francis Journals, vol. 50(44), pages 4745-4762, September.
    16. Serda Selin Ozturk, 2020. "Dynamic Connectedness between Bitcoin, Gold, and Crude Oil Volatilities and Returns," JRFM, MDPI, vol. 13(11), pages 1-14, November.
    17. Okorie, David Iheke & Lin, Boqiang, 2020. "Crude oil price and cryptocurrencies: Evidence of volatility connectedness and hedging strategy," Energy Economics, Elsevier, vol. 87(C).
    18. Zeng, Ting & Yang, Mengying & Shen, Yifan, 2020. "Fancy Bitcoin and conventional financial assets: Measuring market integration based on connectedness networks," Economic Modelling, Elsevier, vol. 90(C), pages 209-220.
    19. Achraf Ghorbel & Ahmed Jeribi, 2021. "Investigating the relationship between volatilities of cryptocurrencies and other financial assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 817-843, December.
    20. José Antonio Núñez & Mario I Contreras-Valdez & Carlos A Franco-Ruiz, 2019. "Statistical analysis of bitcoin during explosive behavior periods," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    21. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    22. Baur, Dirk G. & Hong, KiHoon & Lee, Adrian D., 2018. "Bitcoin: Medium of exchange or speculative assets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 54(C), pages 177-189.
    23. Mensi, Walid & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2020. "Spillovers and co-movements between precious metals and energy markets: Implications on portfolio management," Resources Policy, Elsevier, vol. 69(C).
    24. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    25. Amine Lahiani & Ahmed Jeribi & Nabila Boukef Jlassi, 2021. "Nonlinear tail dependence in cryptocurrency-stock market returns: The role of Bitcoin futures," Post-Print hal-03573206, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
    2. Singh, Sanjeet & Bansal, Pooja & Bhardwaj, Nav, 2022. "Correlation between geopolitical risk, economic policy uncertainty, and Bitcoin using partial and multiple wavelet coherence in P5 + 1 nations," Research in International Business and Finance, Elsevier, vol. 63(C).
    3. Asil Azimli, 2024. "Time-varying spillovers in high-order moments among cryptocurrencies," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-39, December.
    4. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. Cynthia Weiyi Cai & Rui Xue & Bi Zhou, 2023. "Cryptocurrency puzzles: a comprehensive review and re-introduction," Journal of Accounting Literature, Emerald Group Publishing Limited, vol. 46(1), pages 26-50, June.
    6. Chhatwani, Malvika & Parija, Arpit Kumar, 2023. "Who invests in cryptocurrency? The role of overconfidence among American investors," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 107(C).
    7. Ahmed, Walid M.A., 2021. "Stock market reactions to upside and downside volatility of Bitcoin: A quantile analysis," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    8. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    9. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    10. Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
    11. Waqas Hanif & Hee-Un Ko & Linh Pham & Sang Hoon Kang, 2023. "Dynamic connectedness and network in the high moments of cryptocurrency, stock, and commodity markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-40, December.
    12. Kumar Kulbhaskar, Anamika & Subramaniam, Sowmya, 2023. "Breaking news headlines: Impact on trading activity in the cryptocurrency market," Economic Modelling, Elsevier, vol. 126(C).
    13. Muhammad Anas & Syed Jawad Hussain Shahzad & Larisa Yarovaya, 2024. "The use of high-frequency data in cryptocurrency research: a meta-review of literature with bibliometric analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    14. Ştefan Cristian Gherghina & Liliana Nicoleta Simionescu, 2023. "Exploring the asymmetric effect of COVID-19 pandemic news on the cryptocurrency market: evidence from nonlinear autoregressive distributed lag approach and frequency domain causality," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    15. Li, Leon & Miu, Peter, 2023. "Are cryptocurrencies a safe haven for stock investors? A regime-switching approach," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 367-385.
    16. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    17. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    18. Andreas Hackethal & Tobin Hanspal & Dominique M Lammer & Kevin Rink, 2022. "The Characteristics and Portfolio Behavior of Bitcoin Investors: Evidence from Indirect Cryptocurrency Investments [The investor in structured retail products: advice driven or gambling oriented]," Review of Finance, European Finance Association, vol. 26(4), pages 855-898.
    19. Virginie Terraza & Aslı Boru İpek & Mohammad Mahdi Rounaghi, 2024. "The nexus between the volatility of Bitcoin, gold, and American stock markets during the COVID-19 pandemic: evidence from VAR-DCC-EGARCH and ANN models," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-34, December.
    20. Ahmet Faruk Aysan & Ali Yavuz Polat & Hasan Tekin & Ahmet Semih Tunali, 2021. "Bitcoin-specific fear sentiment and bitcoin returns in the COVID-19 outbreak," Working Papers hal-03354930, HAL.

    More about this item

    Keywords

    Crypto Assets; Bitcoin; Machine Learning; Investor Decisions.;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:apfiba:v:14:y:2024:i:6:f:14_6_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.