IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v29y2015i14p4919-4926.html
   My bibliography  Save this article

Are Reservoirs Water Consumers or Water Collectors? Reflections on the Water Footprint Concept Applied on Reservoirs

Author

Listed:
  • T. Bakken
  • F. Kjosavik
  • Å. Killingtveit
  • K. Alfredsen

Abstract

IPCC Special Report on Renewable Energy Sources (2011) revealed potentially very high water consumption rates from hydropower production compared to other renewable technologies, but suffered from few studies and methodological problems. More recent studies present new estimates values far beyond those presented by IPCC, some claiming that hydropower is a large-scale water consumer, but do not provide a more consistent picture of the ‘true water consumption of hydropower’. We compiled data from ICOLD’s World Register of Dams, considered being the most extensive and complete global dataset of reservoirs and dams larger than 15 m containing description of close to 40 000 dams and reservoirs. We coupled this dataset with water scarcity information about the location of the individual projects and found that only very few reservoirs located in water-scarce areas are used exclusively for hydropower production or have that as their main purpose (fewer than 0.1 %). As the purpose of the majority of the reservoirs located in water-scarce areas are to collect water in the wet season to secure adequate supply of water for irrigation, domestic supply, industry and more purposes in the dry season, we find it fundamentally problematic to assign a water footprint to such an infrastructure, even though the purpose of these reservoirs might also be to produce electricity. Rather opposite - the fact that reservoirs increase the availability of water in the dry season make reservoirs needed. We conclude that assigning water footprint/consumption values of reservoirs will convey the wrong message to decision-makers unless the reservoirs’ effect on the availability of local water resources is fully accounted for. Copyright Springer Science+Business Media Dordrecht 2015

Suggested Citation

  • T. Bakken & F. Kjosavik & Å. Killingtveit & K. Alfredsen, 2015. "Are Reservoirs Water Consumers or Water Collectors? Reflections on the Water Footprint Concept Applied on Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 4919-4926, November.
  • Handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:4919-4926
    DOI: 10.1007/s11269-015-1104-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-015-1104-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-015-1104-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Maestre-Valero & D. Martínez-Granados & V. Martínez-Alvarez & J. Calatrava, 2013. "Socio-Economic Impact of Evaporation Losses from Reservoirs Under Past, Current and Future Water Availability Scenarios in the Semi-Arid Segura Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(5), pages 1411-1426, March.
    2. Strzepek, Kenneth M. & Yohe, Gary W. & Tol, Richard S.J. & Rosegrant, Mark W., 2008. "The value of the high Aswan Dam to the Egyptian economy," Ecological Economics, Elsevier, vol. 66(1), pages 117-126, May.
    3. Gerbens-Leenes, P.W. & Hoekstra, A.Y. & van der Meer, Th., 2009. "The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply," Ecological Economics, Elsevier, vol. 68(4), pages 1052-1060, February.
    4. Julian Fulton & Heather Cooley & Peter Gleick, 2014. "Water Footprint Outcomes and Policy Relevance Change with Scale Considered: Evidence from California," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3637-3649, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arjen Y. Hoekstra, 2017. "Water Footprint Assessment: Evolvement of a New Research Field," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 3061-3081, August.
    2. Rui Shu & Xinchun Cao & Mengyang Wu, 2021. "Clarifying Regional Water Scarcity in Agriculture based on the Theory of Blue, Green and Grey Water Footprints," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1101-1118, February.
    3. Tor Haakon Bakken & Christian Almestad & Jørgen Melhuus Rugelbak & Marisa Escobar & Steven Micko & Knut Alfredsen, 2016. "Climate Change and Increased Irrigation Demands: What Is Left for Hydropower Generation? Results from Two Semi-Arid Basins," Energies, MDPI, vol. 9(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dinar, Ariel, 2012. "Economy-wide implications of direct and indirect policy interventions in the water sector: lessons from recent work and future research needs," Policy Research Working Paper Series 6068, The World Bank.
    2. Giorgia Giovannetti & Elisa Ticci, 2013. "Biofuel Development and Large-Scale Land Deals in Sub-Saharan Africa," Working Papers - Economics wp2013_27.rdf, Universita' degli Studi di Firenze, Dipartimento di Scienze per l'Economia e l'Impresa.
    3. White, David J. & Hubacek, Klaus & Feng, Kuishuang & Sun, Laixiang & Meng, Bo, 2018. "The Water-Energy-Food Nexus in East Asia: A tele-connected value chain analysis using inter-regional input-output analysis," Applied Energy, Elsevier, vol. 210(C), pages 550-567.
    4. Dolores Rey & Alberto Garrido & Javier Calatrava, 2016. "An Innovative Option Contract for Allocating Water in Inter-Basin Transfers: the Case of the Tagus-Segura Transfer in Spain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1165-1182, February.
    5. Sheila M. Olmstead & Hilary Sigman, 2015. "Damming the Commons: An Empirical Analysis of International Cooperation and Conflict in Dam Location," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 2(4), pages 497-526.
    6. Calzadilla, Alvaro & Rehdanz, Katrin & Tol, Richard S.J., 2008. "Water scarcity and the impact of improved irrigation management: A CGE analysis," Conference papers 331788, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    7. Holmatov, B. & Hoekstra, A.Y. & Krol, M.S., 2019. "Land, water and carbon footprints of circular bioenergy production systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 224-235.
    8. Tan, Raymond R. & Aviso, Kathleen B. & Barilea, Ivan U. & Culaba, Alvin B. & Cruz, Jose B., 2012. "A fuzzy multi-regional input–output optimization model for biomass production and trade under resource and footprint constraints," Applied Energy, Elsevier, vol. 90(1), pages 154-160.
    9. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    10. Xie, Xiaomin & Jiang, Xiaoyun & Zhang, Tingting & Huang, Zhen, 2019. "Regional water footprints assessment for hydroelectricity generation in China," Renewable Energy, Elsevier, vol. 138(C), pages 316-325.
    11. Zhang, Ping & Zhuo, La & Li, Meng & Liu, Yilin & Wu, Pute, 2023. "Assessment of advanced bioethanol potential under water and land resource constraints in China," Renewable Energy, Elsevier, vol. 212(C), pages 359-371.
    12. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    13. Rachit Saxena & Sai Kranthi Vanga & Jin Wang & Valérie Orsat & Vijaya Raghavan, 2018. "Millets for Food Security in the Context of Climate Change: A Review," Sustainability, MDPI, vol. 10(7), pages 1-31, June.
    14. Edward S. Spang & Bret D. Stevens, 2018. "Estimating the Blue Water Footprint of In-Field Crop Losses: A Case Study of U.S. Potato Cultivation," Sustainability, MDPI, vol. 10(8), pages 1-17, August.
    15. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    16. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.
    17. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.
    18. Chakaphon Singto & Martijn Vries & Gert Jan Hofstede & Luuk Fleskens, 2021. "Ex Ante Impact Assessment of Reservoir Construction Projects for Different Stakeholders Using Agent-Based Modeling," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 1047-1064, February.
    19. William Stafford & Adrian Lotter & Alan Brent & Graham von Maltitz, 2017. "Biofuels technology: A look forward," WIDER Working Paper Series 087, World Institute for Development Economic Research (UNU-WIDER).
    20. Nackley, Lloyd L. & Vogt, Kristiina A. & Kim, Soo-Hyung, 2014. "Arundo donax water use and photosynthetic responses to drought and elevated CO2," Agricultural Water Management, Elsevier, vol. 136(C), pages 13-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:29:y:2015:i:14:p:4919-4926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.