IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v28y2014i11p3539-3554.html
   My bibliography  Save this article

Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach: A Case Study

Author

Listed:
  • Mohammad Karamouz
  • Sara Nazif
  • Mohammad Sherafat
  • Zahra Zahmatkesh

Abstract

Optimal reservoir operation and water allocation are critical issues in sustainable water resource management due to increasing water demand. Multiplicity of stockholders with different objectives and utilities makes reservoir operation a complicated problem with a variety of constraints and objectives to be considered. In this case, the conflict resolution models can be efficiently used to determine the optimal water allocation scheme considering the utility and relative authority of different stakeholders. In this study, the Nash product is used for formulation of the objective function of a reservoir water allocation model. The Analytic Hierarchy Process (AHP) is used to determine the importance of each stockholder in bargaining for water. The Particle Swarm Optimization algorithm (PSO) and the Imperialism Competitive Algorithm (ICA) are applied to solve the proposed optimization model. System performance indices including reliability, resiliency and vulnerability are used to evaluate the performance of optimization algorithms. The simplest and most often-used reservoir policy (Standard Operating Policy, SOP) is also used in order to evaluate the performance of the proposed models. The proposed model is applied to the Karkheh River-Reservoir system located in south western part of Iran as a case study. Results show the significance of the application of conflict resolution models, such as the Nash theory and proposed optimization algorithms, for water allocation in the regional scale especially in complicated water supply systems. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Mohammad Karamouz & Sara Nazif & Mohammad Sherafat & Zahra Zahmatkesh, 2014. "Development of an Optimal Reservoir Operation Scheme Using Extended Evolutionary Computing Algorithms Based on Conflict Resolution Approach: A Case Study," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3539-3554, September.
  • Handle: RePEc:spr:waterr:v:28:y:2014:i:11:p:3539-3554
    DOI: 10.1007/s11269-014-0686-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-014-0686-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-014-0686-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. Babel & A. Gupta & D. Nayak, 2005. "A Model for Optimal Allocation of Water to Competing Demands," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 693-712, December.
    2. Dedi Liu & Xiaohong Chen & Zhanghua Lou, 2010. "A Model for the Optimal Allocation of Water Resources in a Saltwater Intrusion Area: A Case Study in Pearl River Delta in China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(1), pages 63-81, January.
    3. George, Biju & Malano, Hector & Davidson, Brian & Hellegers, Petra & Bharati, Luna & Massuel, Sylvain, 2011. "An integrated hydro-economic modelling framework to evaluate water allocation strategies I: Model development," Agricultural Water Management, Elsevier, vol. 98(5), pages 733-746, March.
    4. Saaty, Thomas L., 1994. "Highlights and critical points in the theory and application of the Analytic Hierarchy Process," European Journal of Operational Research, Elsevier, vol. 74(3), pages 426-447, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen-jing Niu & Zhong-kai Feng & Yu-rong Li & Shuai Liu, 2021. "Cooperation Search Algorithm for Power Generation Production Operation Optimization of Cascade Hydropower Reservoirs," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(8), pages 2465-2485, June.
    2. Yanbin Li & Yubo Li & Kai Feng & Kaiyuan Tian & Tongxuan Huang, 2023. "Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    3. Hadi Tarebari & Amir Hossein Javid & Seyyed Ahmad Mirbagheri & Hedayat Fahmi, 2018. "Multi-Objective Surface Water Resource Management Considering Conflict Resolution and Utility Function Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4487-4509, November.
    4. Tao Bai & Lianzhou Wu & Jian-xia Chang & Qiang Huang, 2015. "Multi-Objective Optimal Operation Model of Cascade Reservoirs and Its Application on Water and Sediment Regulation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2751-2770, June.
    5. Aida Tayebiyan & Thamer Ahmed Mohammed Ali & Abdul Halim Ghazali & M. A. Malek, 2016. "Optimization of Exclusive Release Policies for Hydropower Reservoir Operation by Using Genetic Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 1203-1216, February.
    6. Zaher Mundher Yaseen & Mohammad Ehteram & Md. Shabbir Hossain & Chow Ming Fai & Suhana Binti Koting & Nuruol Syuhadaa Mohd & Wan Zurina Binti Jaafar & Haitham Abdulmohsin Afan & Lai Sai Hin & Nuratiah, 2019. "A Novel Hybrid Evolutionary Data-Intelligence Algorithm for Irrigation and Power Production Management: Application to Multi-Purpose Reservoir Systems," Sustainability, MDPI, vol. 11(7), pages 1-28, April.
    7. Feifei Zheng & Zhexian Qi & Weiwei Bi & Tuqiao Zhang & Tingchao Yu & Yu Shao, 2017. "Improved Understanding on the Searching Behavior of NSGA-II Operators Using Run-Time Measure Metrics with Application to Water Distribution System Design Problems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(4), pages 1121-1138, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunlong Li & Jianzhong Zhou & Shuo Ouyang & Chao Wang & Yi Liu, 2015. "Water Resources Optimal Allocation Based on Large-scale Reservoirs in the Upper Reaches of Yangtze River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(7), pages 2171-2187, May.
    2. Jing Tian & Shenglian Guo & Dedi Liu & Zhengke Pan & Xingjun Hong, 2019. "A Fair Approach for Multi-Objective Water Resources Allocation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(10), pages 3633-3653, August.
    3. Amir Hatamkhani & Ali Moridi, 2021. "Optimal Development of Agricultural Sectors in the Basin Based on Economic Efficiency and Social Equality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(3), pages 917-932, February.
    4. Elmira Valipour & Hamed Ketabchi & Reza Safari shali & Saeed Morid, 2023. "Equity, Social Welfare, and Economic Benefit Efficiency in the Optimal Allocation of Coastal Groundwater Resources," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(8), pages 2969-2990, June.
    5. Reza Roozbahani & Babak Abbasi & Sergei Schreider & Zahra Hosseinifard, 2020. "A basin-wide approach for water allocation and dams location-allocation," Annals of Operations Research, Springer, vol. 287(1), pages 323-349, April.
    6. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    7. Rouhi Rad, Mani & Haacker, Erin M.K. & Sharda, Vaishali & Nozari, Soheil & Xiang, Zaichen & Araya, A. & Uddameri, Venkatesh & Suter, Jordan F. & Gowda, Prasanna, 2020. "MOD$$AT: A hydro-economic modeling framework for aquifer management in irrigated agricultural regions," Agricultural Water Management, Elsevier, vol. 238(C).
    8. Leakey, Roger & Kranjac-Berisavljevic, Gordana & Caron, Patrick & Craufurd, Peter & Martin, Adrienne M. & McDonald, Andy & Abedini, Walter & Afiff, Suraya & Bakurin, Ndey & Bass, Steve & Hilbeck, Ange, 2009. "Impacts of AKST on development and sustainability goals," Book Chapters,, International Water Management Institute.
    9. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    10. Serafim Opricovic, 2009. "A Compromise Solution in Water Resources Planning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(8), pages 1549-1561, June.
    11. Azam Abdolazimi & Mehdi Momeni & Majid Montazeri, 2015. "Comparing ELECTRE and Linear Assignment Methods in Zoning Shahroud-Bastam Watershed for Artificial Recharge of Groundwater with GIS Technique," Modern Applied Science, Canadian Center of Science and Education, vol. 9(1), pages 1-68, January.
    12. R. Roozbahani & S. Schreider & B. Abbasi, 2013. "Economic Sharing of Basin Water Resources between Competing Stakeholders," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2965-2988, June.
    13. George, Biju & Malano, Hector & Davidson, Brian & Hellegers, Petra & Bharati, Luna & Massuel, Sylvain, 2011. "An integrated hydro-economic modelling framework to evaluate water allocation strategies II: Scenario assessment," Agricultural Water Management, Elsevier, vol. 98(5), pages 747-758, March.
    14. Amjath-Babu, T.S. & Sharma, Bikash & Brouwer, Roy & Rasul, Golam & Wahid, Shahriar M. & Neupane, Nilhari & Bhattarai, Utsav & Sieber, Stefan, 2019. "Integrated modelling of the impacts of hydropower projects on the water-food-energy nexus in a transboundary Himalayan river basin," Applied Energy, Elsevier, vol. 239(C), pages 494-503.
    15. Xike Guan & Zengchuan Dong & Yun Luo & Dunyu Zhong, 2021. "Multi-Objective Optimal Allocation of River Basin Water Resources under Full Probability Scenarios Considering Wet–Dry Encounters: A Case Study of Yellow River Basin," IJERPH, MDPI, vol. 18(21), pages 1-19, November.
    16. Mukherjee, Krishnendu, 2014. "Analytic hierarchy process and technique for order preference by similarity to ideal solution: a bibliometric analysis from past, present and future of AHP and TOPSIS," MPRA Paper 59887, University Library of Munich, Germany.
    17. Alina Popa & Shahrazad Hadad & Robert Paiusan & Marian Nastase, 2018. "A New Method for Agricultural Market Share Assessment," Sustainability, MDPI, vol. 11(1), pages 1-13, December.
    18. Madurai Elavarasan, Rajvikram & Pugazhendhi, Rishi & Irfan, Muhammad & Mihet-Popa, Lucian & Campana, Pietro Elia & Khan, Irfan Ahmad, 2022. "A novel Sustainable Development Goal 7 composite index as the paradigm for energy sustainability assessment: A case study from Europe," Applied Energy, Elsevier, vol. 307(C).
    19. Contantin BR?TIANU & Ivona ORZEA, 2013. "Knowledge Strategies in Using Social Networks," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 1(1), pages 25-38, May.
    20. Iwaro, Joseph & Mwasha, Abrahams & Williams, Rupert G. & Zico, Ricardo, 2014. "An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 417-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:28:y:2014:i:11:p:3539-3554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.