IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i2p341-363.html
   My bibliography  Save this article

Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model

Author

Listed:
  • Samuel Beskow
  • Lloyd Norton
  • Carlos Mello

Abstract

Hydrological models have been used in many places of the world in order to support practitioners with respect to watershed management actions. The goal of this research was to apply the Lavras Simulation of Hydrology (LASH model) to a Brazilian tropical watershed dominated by Oxisols, to estimate maximum, minimum and mean stream flows for both current land-use (“scenario 1”) and other regional trend land-use scenarios (“scenario 2”—pasture into eucalyptus; and “scenario 3”—eucalyptus into pasture). This model is a continuous, distributed and semi-conceptual model for simulation of different hydrological components on a daily basis. The model had a good performance with respect to the “scenario 1”, resulting in Nash-Sutcliffe coefficients equal to 0.81, 0.82 and 0.98 for minimum, maximum and mean discharges, respectively. When “scenario 2” was simulated, it was found that minimum, mean and maximum stream flows had their values reduced in average by 7.39 %, 13.84 % and 20.38 %, respectively. On the contrary, it was observed in “scenario 3” an increase in average by 0.23 %, 0.44 % and 1.19 % for minimum, mean and maximum stream flows, respectively. With respect to water yield, scenario 2 resulted in a mean reduction of 119 mm, whereas for scenario 3 the difference was not so pronounced in relation to the current land use. Results obtained in scenario 2 are troublesome since this watershed drains into an important regional Hydroelectric Power Plant Reservoir and this approach needs to be considered by the Minas Gerais State electric energy company for its planning strategies for the future. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:2:p:341-363
    DOI: 10.1007/s11269-012-0189-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-012-0189-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-012-0189-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Si-Hui Dong, 2008. "Genetic Algorithm Based Parameter Estimation of Nash Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(4), pages 525-533, April.
    2. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad, 2009. "Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2417-2435, September.
    3. Paolo Vezza & Claudio Comoglio & Maurizio Rosso & Alberto Viglione, 2010. "Low Flows Regionalization in North-Western Italy," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4049-4074, November.
    4. Aijing Zhang & Chi Zhang & Guobin Fu & Bende Wang & Zhenxin Bao & Hongxing Zheng, 2012. "Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2199-2217, June.
    5. Jueyi Sui, 2005. "Estimation of Design Flood Hydrograph for an Ungauged Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(6), pages 813-830, December.
    6. Vikrant Jain & R. Sinha, 2003. "Derivation of Unit Hydrograph from GIUH Analysis for a Himalayan River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 355-376, October.
    7. Bormann, Helge & Breuer, Lutz & Gräff, Thomas & Huisman, Johan A., 2007. "Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis," Ecological Modelling, Elsevier, vol. 209(1), pages 29-40.
    8. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.
    9. S. Jain & R. Singh & S. Seth, 2000. "Design Flood Estimation Using GIS Supported GIUHApproach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 369-376, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Guo & Jianzhong Zhou & Qiang Zou & Yi Liu & Lixiang Song, 2013. "A Novel Multi-Objective Shuffled Complex Differential Evolution Algorithm with Application to Hydrological Model Parameter Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2923-2946, June.
    2. Nayara P. V. Andrade & Marcelo R. Viola & Samuel Beskow & Tamara L. Caldeira & Li Guo & Carlos R. Mello, 2020. "Assessment of Spatial and Temporal Soil Water Storage Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 5031-5046, December.
    3. Zandra A. Cunha & Carlos R. Mello & Samuel Beskow & Marcelle M. Vargas & Jorge A. Guzman & Maíra M. Moura, 2023. "A Modeling Approach for Analyzing the Hydrological Impacts of the Agribusiness Land-Use Scenarios in an Amazon Basin," Land, MDPI, vol. 12(7), pages 1-20, July.
    4. Shuai Zhou & Yimin Wang & Ziyan Li & Jianxia Chang & Aijun Guo, 2021. "Quantifying the Uncertainty Interaction Between the Model Input and Structure on Hydrological Processes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 3915-3935, September.
    5. Helge Bormann & Oliver Caspari, 2015. "On the Value of Hydrological Models Developed in the Context of Undergraduate Education for Discharge Prediction and Reservoir Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3569-3584, August.
    6. M. Viola & C. Mello & S. Beskow & L. Norton, 2014. "Impacts of Land-use Changes on the Hydrology of the Grande River Basin Headwaters, Southeastern Brazil," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(13), pages 4537-4550, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.
    2. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    3. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.
    4. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    5. Chesheng Zhan & Sidong Zeng & Shanshan Jiang & Huixiao Wang & Wen Ye, 2014. "An Integrated Approach for Partitioning the Effect of Climate Change and Human Activities on Surface Runoff," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3843-3858, September.
    6. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    7. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    8. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad & Hashim Hashmi, 2010. "Estimation of a Unique Pair of Nash Model Parameters: An Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2971-2989, September.
    9. Marco Franchini & Ernesto Ventaglio & Alessandra Bonoli, 2011. "A Procedure for Evaluating the Compatibility of Surface Water Resources with Environmental and Human Requirements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(14), pages 3613-3634, November.
    10. Holsten, Anne & Vetter, Tobias & Vohland, Katrin & Krysanova, Valentina, 2009. "Impact of climate change on soil moisture dynamics in Brandenburg with a focus on nature conservation areas," Ecological Modelling, Elsevier, vol. 220(17), pages 2076-2087.
    11. Wenlin Yuan & Meiqi Liu & Fang Wan, 2019. "Study on the impact of rainfall pattern in small watersheds on rainfall warning index of flash flood event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 665-682, June.
    12. Jet-chau Wen & Yen-jen Lee & Shin-jen Cheng & Ju-huang Lee, 2014. "Changes of rural to urban areas in hydrograph characteristics on watershed divisions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 887-909, November.
    13. Momcilo Markus & Donald Wuebbles & Xin-Zhong Liang & Katharine Hayhoe & David Kristovich, 2012. "Diagnostic analysis of future climate scenarios applied to urban flooding in the Chicago metropolitan area," Climatic Change, Springer, vol. 111(3), pages 879-902, April.
    14. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    15. Shereif H Mahmoud & A A Alazba, 2015. "Hydrological Response to Land Cover Changes and Human Activities in Arid Regions Using a Geographic Information System and Remote Sensing," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-19, April.
    16. Glavan, Matjaž & Miličić, Vesna & Pintar, Marina, 2013. "Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia," Ecological Modelling, Elsevier, vol. 261, pages 58-73.
    17. Anzhi Wang & Changjie Jin & Jianmei Liu & Tiefan Pei, 2006. "A Modified Hortonian Overland Flow Model Based on Laboratory Experiments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 20(2), pages 181-192, April.
    18. Jordan Clayton & Jason Kean, 2010. "Establishing a Multi-scale Stream Gaging Network in the Whitewater River Basin, Kansas, USA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(13), pages 3641-3664, October.
    19. Fahmida & Amatul Razzaq Chaudhary & Uzma Hanif, 2022. "Climate Change and Food Security: Steps towards Sustainable Development Goals," iRASD Journal of Economics, International Research Alliance for Sustainable Development (iRASD), vol. 4(2), pages 310-328, June.
    20. Baifus Manke, Emanuele & Nörenberg, Bernardo Gomes & Faria, Lessandro Coll & Tarjuelo, José Maria & Colombo, Alberto & Chagas Neta, Maria Clotilde Carré & Parfitt, José Maria Barbat, 2019. "Wind drift and evaporation losses of a mechanical lateral-move irrigation system: Oscillating plate versus fixed spray plate sprinklers," Agricultural Water Management, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:2:p:341-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.