IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i12p2048-d1532728.html
   My bibliography  Save this article

Impacts of Climate Change and Land Use/Cover Change on Runoff in the Huangfuchuan River Basin

Author

Listed:
  • Xin Huang

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

  • Lin Qiu

    (School of Water Resources, North China University of Water Resources and Electric Power, Zhengzhou 450045, China)

Abstract

Studying the response of runoff to climate change and land use/cover change has guiding significance for watershed land planning, water resource planning, and ecological environment protection. Especially in the Yellow River Basin, which has a variable climate and fragile ecology, such research is more important. This article takes the Huangfuchuan River Basin (HFCRB) in the middle reaches of the Yellow River as the research area, and analyzes the impact of climate change scenarios and land use/cover change scenarios on runoff by constructing a SWAT model. Using CMIP6 GCMs to obtain future climate data and the CA–Markov model to predict future land use data, the two are coupled to estimate the future runoff process in the HFCRB, and the uncertainty of the estimated runoff is decomposed and quantified. The results were as follows: ① The SWAT model has good adaptability in the HFCRB. During the calibrated period and the validation period, R 2 ≥ 0.84, NSE ≥ 0.8, and | PBIAS | ≤ 17.5%, all of which meet the model evaluation criteria. ② There is a negative correlation between temperature and runoff, and a positive correlation between precipitation and runoff. Runoff is more sensitive to temperature rise and precipitation increase. ③ The impact of land use types on runoff is in the order of cultivated land > grassland > forest land. ④ The variation range of runoff under the combined effects of future climate change and LUCC is between that of single climate change or LUCC scenarios. The increase in runoff under SSP126, SSP245, and SSP585 scenarios is 10.57%, 25.55%, and 31.28%, respectively. Precipitation is the main factor affecting the future runoff changes in the HFCRB. Model uncertainty is the main source of uncertainty in runoff prediction.

Suggested Citation

  • Xin Huang & Lin Qiu, 2024. "Impacts of Climate Change and Land Use/Cover Change on Runoff in the Huangfuchuan River Basin," Land, MDPI, vol. 13(12), pages 1-23, November.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2048-:d:1532728
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/12/2048/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/12/2048/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cundong Xu & Xiaomeng Hu & Zijin Liu & Xin Wang & Junjiao Tian & Zhihong Zhao, 2023. "Predicting the Evolution Trend of Water and Land Resource Carrying Capacity Based on CA–Markov Model in an Arid Region of Northwest China," Sustainability, MDPI, vol. 15(2), pages 1-16, January.
    2. Aijing Zhang & Chi Zhang & Guobin Fu & Bende Wang & Zhenxin Bao & Hongxing Zheng, 2012. "Assessments of Impacts of Climate Change and Human Activities on Runoff with SWAT for the Huifa River Basin, Northeast China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2199-2217, June.
    3. Jinkang Du & Hanyi Rui & Tianhui Zuo & Qian Li & Dapeng Zheng & Ailing Chen & Youpeng Xu & C.-Y. Xu, 2013. "Hydrological Simulation by SWAT Model with Fixed and Varied Parameterization Approaches Under Land Use Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 2823-2838, June.
    4. P. C. D. Milly & K. A. Dunne & A. V. Vecchia, 2005. "Global pattern of trends in streamflow and water availability in a changing climate," Nature, Nature, vol. 438(7066), pages 347-350, November.
    5. Ziqi Yan & Zuhao Zhou & Jiajia Liu & Hao Wang & Dong Li, 2020. "Water use characteristics and impact factors in the Yellow River basin, China," Water International, Taylor & Francis Journals, vol. 45(3), pages 148-168, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiezhu Yan & Jianwen Bai & Amelia LEE ZHI YI & Zhenyao Shen, 2018. "SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    2. Yixuan Wang & Jianzhu Li & Ping Feng & Rong Hu, 2015. "A Time-Dependent Drought Index for Non-Stationary Precipitation Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5631-5647, December.
    3. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    4. Quiggin, John & Adamson, David & Chambers, Sarah & Schrobback, Peggy, 2009. "Climate change, mitigation and adaptation: the case of the Murray-Darling Basin in Australia," Risk and Sustainable Management Group Working Papers 149878, University of Queensland, School of Economics.
    5. Fei Gao & Yi Luo & Congju Zhao, 2023. "Effects of Climate and Land-Use Change on the Supply and Demand Relationship of Water Provision Services in the Yellow River Basin," Land, MDPI, vol. 12(12), pages 1-19, November.
    6. Yiting Shao & Xiaohui Zhai & Xingmin Mu & Sen Zheng & Dandan Shen & Jinglin Qian, 2024. "An Attribution Analysis of Runoff Alterations in the Danjiang River Watershed for Sustainable Water Resource Management by Different Methods," Sustainability, MDPI, vol. 16(17), pages 1-23, September.
    7. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    8. Nicolas Misailidis Stríkis & Plácido Fabrício Silva Melo Buarque & Francisco William Cruz & Juan Pablo Bernal & Mathias Vuille & Ernesto Tejedor & Matheus Simões Santos & Marília Harumi Shimizu & Ange, 2024. "Modern anthropogenic drought in Central Brazil unprecedented during last 700 years," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Wenxin Xu & Jie Chen & Xunchang J. Zhang, 2022. "Scale Effects of the Monthly Streamflow Prediction Using a State-of-the-art Deep Learning Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(10), pages 3609-3625, August.
    10. Kukal, M.S. & Irmak, S., 2020. "Characterization of water use and productivity dynamics across four C3 and C4 row crops under optimal growth conditions," Agricultural Water Management, Elsevier, vol. 227(C).
    11. Moldir Rakhimova & Tie Liu & Sanim Bissenbayeva & Yerbolat Mukanov & Khusen Sh. Gafforov & Zhuldyzay Bekpergenova & Aminjon Gulakhmadov, 2020. "Assessment of the Impacts of Climate Change and Human Activities on Runoff Using Climate Elasticity Method and General Circulation Model (GCM) in the Buqtyrma River Basin, Kazakhstan," Sustainability, MDPI, vol. 12(12), pages 1-22, June.
    12. Jinfei Hu & Guangju Zhao & Pengfei Li & Xingmin Mu, 2022. "Variations of pan evaporation and its attribution from 1961 to 2015 on the Loess Plateau, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1199-1217, March.
    13. Xiaowen Zhuang & Yurui Fan & Yongping Li & Chuanbao Wu, 2023. "Evaluation Climate Change Impacts on Water Resources Over the Upper Reach of the Yellow River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2875-2889, May.
    14. Wang, Sicong & Wang, Shifeng, 2017. "Implications of improving energy efficiency for water resources," Energy, Elsevier, vol. 140(P1), pages 922-928.
    15. Peng Qi & Guangxin Zhang & Yi Jun Xu & Zhikun Xia & Ming Wang, 2019. "Response of Water Resources to Future Climate Change in a High-Latitude River Basin," Sustainability, MDPI, vol. 11(20), pages 1-21, October.
    16. Rachel I. Block & Marianne Fay & Jane Ebinger, 2010. "Adapting to Climate Change in Eastern Europe and Central Asia," World Bank Publications - Books, The World Bank Group, number 2407, April.
    17. Yan Ma & Arvid Bring & Zahra Kalantari & Georgia Destouni, 2019. "Potential for Hydroclimatically Driven Shifts in Infectious Disease Outbreaks: The Case of Tularemia in High-Latitude Regions," IJERPH, MDPI, vol. 16(19), pages 1-11, October.
    18. Lihua Xiong & Tao Du & Chong-Yu Xu & Shenglian Guo & Cong Jiang & Christopher Gippel, 2015. "Non-Stationary Annual Maximum Flood Frequency Analysis Using the Norming Constants Method to Consider Non-Stationarity in the Annual Daily Flow Series," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3615-3633, August.
    19. repec:zib:zbesmy:v:5:y:2024:i:2:p:98-109 is not listed on IDEAS
    20. Zhenliang Yin & Qi Feng & Linshan Yang & Xiaohu Wen & Jianhua Si & Songbing Zou, 2017. "Long Term Quantification of Climate and Land Cover Change Impacts on Streamflow in an Alpine River Catchment, Northwestern China," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    21. Orlińska-Woźniak, Paulina & Wilk, Paweł & Szalińska, Ewa, 2020. "Delimitation of nutrient vulnerable zones - a comprehensive method to manage a persistent problem of agriculture," Agricultural Systems, Elsevier, vol. 183(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:12:p:2048-:d:1532728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.