IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v74y2014i2p887-909.html
   My bibliography  Save this article

Changes of rural to urban areas in hydrograph characteristics on watershed divisions

Author

Listed:
  • Jet-chau Wen
  • Yen-jen Lee
  • Shin-jen Cheng
  • Ju-huang Lee

Abstract

This study examined changes in hydrograph characteristics of rural statuses to urban statuses on watershed divisions in Taiwan. The main approach was to relate applicable model parameters with the corresponding imperviousness based on calibration and verification using a semidistributed model and 102 events. The model structure is conceptual linear reservoirs with parallel-type cascaded storages which is represented by overland and channel coefficients. The hourly mean rainfall of the watershed and its divisions were calculated using the Kriging method. The time-variant rainfall losses were calculated using the constant percentage method. The spatial and temporal model inputs, division effective rainfall, were obtained by subtracting mean rainfall of divisions from the rainfall losses. In calibration, the storage values of 50 events derived using appropriate parameter bounds were more reasonable than those using inappropriate bounds. Based on the optimal interval method, the overland storages displayed more marked change than did channel storage in response to imperviousness changes. By contrast, the channel storages were unaffected by the changes in urbanization. The overland storages were related with the imperviousness by using the regression equations for determining their relationships in continuous changes of urbanized divisions. The verification of the regression relationships was based on 52 events. The results indicated that power linkage was an available selection for linking division parameters with the corresponding imperviousness. Finally, the study concludes (1) appropriate bounds in parameter calibration are useful for obtaining significant storage values and (2) the study results using these suitable storages indicated large changes in imperviousness on the downstream divisions, marked urbanization resulted in reduced the time to peak at least 10 %, the peak discharge exceeded an increment of 20–30 %. Copyright Springer Science+Business Media Dordrecht 2014

Suggested Citation

  • Jet-chau Wen & Yen-jen Lee & Shin-jen Cheng & Ju-huang Lee, 2014. "Changes of rural to urban areas in hydrograph characteristics on watershed divisions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(2), pages 887-909, November.
  • Handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:887-909
    DOI: 10.1007/s11069-014-1220-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-014-1220-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-014-1220-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zdeněk Kliment & Milada Matoušková, 2009. "Runoff Changes in the Šumava Mountains (Black Forest) and the Foothill Regions: Extent of Influence by Human Impact and Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1813-1834, July.
    2. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad, 2009. "Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2417-2435, September.
    3. Ashoke Basistha & D. Arya & N. Goel, 2008. "Spatial Distribution of Rainfall in Indian Himalayas – A Case Study of Uttarakhand Region," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(10), pages 1325-1346, October.
    4. Shin-jen Cheng & Cheng-feng Lee & Ju-huang Lee, 2010. "Effects of Urbanization Factors on Model Parameters," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(4), pages 775-794, March.
    5. O. Barron & M. Donn & A. Barr, 2013. "Urbanisation and Shallow Groundwater: Predicting Changes in Catchment Hydrological Responses," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(1), pages 95-115, January.
    6. Chun-dan Cheng & Shin-jen Cheng & Jet-chau Wen & Ju-huang Lee, 2012. "Effects of Raingauge Distribution on Estimation Accuracy of Areal Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 1-20, January.
    7. An Liu & Ashantha Goonetilleke & Prasanna Egodawatta, 2012. "Inadequacy of Land Use and Impervious Area Fraction for Determining Urban Stormwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2259-2265, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-ming Wang & Yu-ji Li & Shin-jen Cheng & Fu-ti Yang & Yin-ta Chen, 2015. "Effects of Spatial-Temporal Imperviousness on Hydrological Responses of Various Areas in an Urbanized Watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(10), pages 3551-3567, August.
    2. Shouhong Zhang & Yiping Guo, 2014. "Stormwater Capture Efficiency of Bioretention Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(1), pages 149-168, January.
    3. Alina Barbulescu, 2016. "A New Method for Estimation the Regional Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 33-42, January.
    4. Alina Barbulescu, 2016. "A New Method for Estimation the Regional Precipitation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(1), pages 33-42, January.
    5. Chun-dan Cheng & Shin-jen Cheng & Jet-chau Wen & Ju-huang Lee, 2012. "Effects of Raingauge Distribution on Estimation Accuracy of Areal Rainfall," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 1-20, January.
    6. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad & Hashim Hashmi, 2010. "Estimation of a Unique Pair of Nash Model Parameters: An Optimization Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(12), pages 2971-2989, September.
    7. Guangyang Wu & Lanhai Li & Sajjad Ahmad & Xi Chen & Xiangliang Pan, 2013. "A Dynamic Model for Vulnerability Assessment of Regional Water Resources in Arid Areas: A Case Study of Bayingolin, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(8), pages 3085-3101, June.
    8. Zhang, Lei & Traore, Seydou & Cui, Yuanlai & Luo, Yufeng & Zhu, Ge & Liu, Bo & Fipps, Guy & Karthikeyan, R. & Singh, Vijay, 2019. "Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques," Agricultural Water Management, Elsevier, vol. 213(C), pages 499-511.
    9. H. Assaf & M. Saadeh, 2009. "Geostatistical Assessment of Groundwater Nitrate Contamination with Reflection on DRASTIC Vulnerability Assessment: The Case of the Upper Litani Basin, Lebanon," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(4), pages 775-796, March.
    10. Tiezhu Yan & Jianwen Bai & Amelia LEE ZHI YI & Zhenyao Shen, 2018. "SWAT-Simulated Streamflow Responses to Climate Variability and Human Activities in the Miyun Reservoir Basin by Considering Streamflow Components," Sustainability, MDPI, vol. 10(4), pages 1-21, March.
    11. Sagarika Patowary & Arup Kumar Sarma, 2020. "Projection of urban settlement in eco-sensitive hilly areas and its impact on peak runoff," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5833-5848, August.
    12. Pravat Jena & Sarita Azad, 2022. "Identification of wet-prone regions over Northwest Himalaya using high-resolution satellite seasonal estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1727-1748, June.
    13. Jun Wang & Shouhong Zhang & Yiping Guo, 2019. "Analyzing the Impact of Impervious Area Disconnection on Urban Runoff Control Using an Analytical Probabilistic Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(5), pages 1753-1768, March.
    14. Nazzareno Diodato & Gianni Tartari & Gianni Bellocchi, 2010. "Geospatial Rainfall Modelling at Eastern Nepalese Highland from Ground Environmental Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(11), pages 2703-2720, September.
    15. Jian Tang & Xin-An Yin & Pan Yang & ZhiFeng Yang, 2014. "Assessment of Contributions of Climatic Variation and Human Activities to Streamflow Changes in the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 2953-2966, August.
    16. Hai-Long Liu & An-Ming Bao & Xiang-Liang Pan & Xi Chen, 2013. "Effect of Land-Use Change and Artificial Recharge on the Groundwater in an Arid Inland River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(10), pages 3775-3790, August.
    17. Watinee Thavorntam & Netnapid Tantemsapya & Leisa Armstrong, 2015. "A combination of meteorological and satellite-based drought indices in a better drought assessment and forecasting in Northeast Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1453-1474, July.
    18. Daniela Ducci & Mariangela Sellerino, 2015. "Groundwater Mass Balance in Urbanized Areas Estimated by a Groundwater Flow Model Based on a 3D Hydrostratigraphical Model: the Case Study of the Eastern Plain of Naples (Italy)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4319-4333, September.
    19. M. Samanta & P. Punetha & S. Sarkar & A. Dwivedi & M. Sharma, 2019. "Slope stability assessment and design of remedial measures for Tungnath Temple at Uttarakhand, India: a case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(1), pages 225-246, March.
    20. Sara Todeschini & Sergio Papiri & Carlo Ciaponi, 2018. "Placement Strategies and Cumulative Effects of Wet-weather Control Practices for Intermunicipal Sewerage Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(8), pages 2885-2900, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:74:y:2014:i:2:p:887-909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.