IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v97y2019i2d10.1007_s11069-019-03666-5.html
   My bibliography  Save this article

Study on the impact of rainfall pattern in small watersheds on rainfall warning index of flash flood event

Author

Listed:
  • Wenlin Yuan

    (Zhengzhou University)

  • Meiqi Liu

    (Zhengzhou University)

  • Fang Wan

    (North China University of Water Resources and Electric Power)

Abstract

Rainfall patterns have a potential impact on floods, and the accuracy of peak flow determinations can directly affect the accuracy of rainfall warning index values. Therefore, it is necessary to explore the impact of rainfall pattern on the uncertainty of rainfall warning index for a small watershed. Xiawan, in the small Peihe watershed in Henan Province, China, was used as a case study. Based on an analysis of rainfall characteristics, a fuzzy recognition method was used to identify common rainfall patterns in the study area, following which they were compared with the regional design rainfall pattern. Design rainstorm flood calculation and a water level/flow inversion method were used to analyze the rainfall warning indices for different rainfall patterns and to establish the relationship between rainfall patterns and the values of rainfall warning index. The results show that: (1) rainfall pattern has a major impact on rainfall warning index values, and the rationality of the rainfall pattern requires consideration. (2) Deviations in peak flow between different rainfall patterns were large, and the timing of peak rainfall had a considerable influence on peak flood flow; (3) within the same early warning time interval, the rainfall warning indices where the timing of peak rainfall was at the start and in middle of the event were 1.67 times and 1.39 times that where rainfall peaked at the end, respectively. Further study of the rainfall pattern and its impact on rainfall warning index can provide technical support and an empirical reference value for the analysis and calculation of early warning indices for flash flood events in small watersheds.

Suggested Citation

  • Wenlin Yuan & Meiqi Liu & Fang Wan, 2019. "Study on the impact of rainfall pattern in small watersheds on rainfall warning index of flash flood event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(2), pages 665-682, June.
  • Handle: RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03666-5
    DOI: 10.1007/s11069-019-03666-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-019-03666-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-019-03666-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S. Jain & R. Singh & S. Seth, 2000. "Design Flood Estimation Using GIS Supported GIUHApproach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 14(5), pages 369-376, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andre Zerger & Stephen Wealands, 2004. "Beyond Modelling: Linking Models with GIS for Flood Risk Management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 33(2), pages 191-208, October.
    2. Samuel Beskow & Lloyd Norton & Carlos Mello, 2013. "Hydrological Prediction in a Tropical Watershed Dominated by Oxisols Using a Distributed Hydrological Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(2), pages 341-363, January.
    3. Mohammad Reza KHALEGHI & Jamal GHODUSI & Hassan AHMADI, 2014. "Regional analysis using the Geomorphologic Instantaneous Unit Hydrograph (GIUH) method," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 9(1), pages 25-30.
    4. A. Sarangi & C. Madramootoo & P. Enright & S. Prasher, 2007. "Evaluation of three unit hydrograph models to predict the surface runoff from a Canadian watershed," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(7), pages 1127-1143, July.
    5. Vikrant Jain & R. Sinha, 2003. "Derivation of Unit Hydrograph from GIUH Analysis for a Himalayan River," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 17(5), pages 355-376, October.
    6. Chang-Shian Chen & Frederick Chou & Boris Chen, 2010. "Spatial Information-Based Back-Propagation Neural Network Modeling for Outflow Estimation of Ungauged Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(14), pages 4175-4197, November.
    7. Muhammad Ahmad & Abdul Ghumman & Sajjad Ahmad, 2009. "Estimation of Clark’s Instantaneous Unit Hydrograph Parameters and Development of Direct Surface Runoff Hydrograph," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(12), pages 2417-2435, September.
    8. Tomasz Bryndal, 2023. "Changes in the Active Drainage Network and Their Impact on the Hydrological Response and Flood Risk Management Process: A Case Study for a Flysch Mountain Catchment," Resources, MDPI, vol. 12(12), pages 1-21, December.
    9. Emna Ellouze-Gargouri & Zoubeida Bargaoui, 2012. "Runoff Estimation for an Ungauged Catchment Using Geomorphological Instantaneous Unit Hydrograph (GIUH) and Copulas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(6), pages 1615-1638, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:97:y:2019:i:2:d:10.1007_s11069-019-03666-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.