IDEAS home Printed from
   My bibliography  Save this article

Comparison of customer response models


  • David Olson


  • Qing Cao


  • Ching Gu


  • Donhee Lee



Segmentation of customers by likelihood of repeating business is a very important tool in marketing management. A number of approaches have been developed to support this activity. This article reviews basic recency, frequency, and monetary (RFM) methods on a set of data involving the sale of beef products. Variants of RFM are demonstrated. Classical data mining techniques of logistic regression, decision trees, and neural networks are also demonstrated. Results indicate a spectrum of tradeoffs. RFM methods are simpler, but less accurate. Considerations of balancing cell sizes as well as compressing data are examined. Both balancing expected cell densities as well as compressing RFM variables into a value function were found to provide more accurate models. Data mining algorithms were all found to provide a noticeable increase in predictive accuracy. Relative tradeoffs among these data mining algorithms in the context of customer segmentation are discussed. Copyright Springer-Verlag 2009

Suggested Citation

  • David Olson & Qing Cao & Ching Gu & Donhee Lee, 2009. "Comparison of customer response models," Service Business, Springer;Pan-Pacific Business Association, vol. 3(2), pages 117-130, June.
  • Handle: RePEc:spr:svcbiz:v:3:y:2009:i:2:p:117-130
    DOI: 10.1007/s11628-009-0064-8

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Crone, Sven F. & Lessmann, Stefan & Stahlbock, Robert, 2006. "The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing," European Journal of Operational Research, Elsevier, vol. 173(3), pages 781-800, September.
    2. Baesens, Bart & Viaene, Stijn & Van den Poel, Dirk & Vanthienen, Jan & Dedene, Guido, 2002. "Bayesian neural network learning for repeat purchase modelling in direct marketing," European Journal of Operational Research, Elsevier, vol. 138(1), pages 191-211, April.
    3. Geng Cui & Man Leung Wong & Hon-Kwong Lui, 2006. "Machine Learning for Direct Marketing Response Models: Bayesian Networks with Evolutionary Programming," Management Science, INFORMS, vol. 52(4), pages 597-612, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Banica Logica & Stefan Liviu Cristian & Jurian Mariana, 2014. "Business Intelligence For Educational Purpose," Balkan Region Conference on Engineering and Business Education, De Gruyter Open, vol. 1(1), pages 333-338, August.
    2. repec:spr:svcbiz:v:11:y:2017:i:4:d:10.1007_s11628-016-0332-3 is not listed on IDEAS
    3. Halil Nadiri, 2011. "Customers’ zone of tolerance for retail stores," Service Business, Springer;Pan-Pacific Business Association, vol. 5(2), pages 113-137, June.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:svcbiz:v:3:y:2009:i:2:p:117-130. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sonal Shukla) or (Rebekah McClure). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.