IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v34y2025i4d10.1007_s10260-025-00802-3.html
   My bibliography  Save this article

Bayesian zero-augmented Birnbaum–Saunders multilevel random effects model: an application to dietary consumption

Author

Listed:
  • Claudia Akemy Koda

    (Universidade Estadual de Campinas)

  • Mariana Rodrigues-Motta

    (Universidade Estadual de Campinas)

  • Filidor Edilfonso Vilca Labra

    (Universidade Estadual de Campinas)

  • Elainy Marciano Batista

    (Universidade Estadual de Campinas)

  • Eliseu Verly

    (Universidade Estadual do Rio de Janeiro)

Abstract

Dietary research plays a crucial role in understanding the causes of various illnesses, and researchers often employ random effects models to effectively identify dietary patterns, considering multiple sources of variability. Modeling food intake data presents challenges due to the presence of zero values and potential asymmetry and heavy tails in the positive data. In this study, we addressed these challenges by proposing a novel approach using a zero-augmented Birnbaum–Saunders (ZABS) distribution parameterized by its mean and a scale parameter, incorporating random effects to accommodate variation due to repeated measures and experimental observations within a Bayesian framework. As part of the analysis we also fit a zero-augmented gamma model to the data, not as a primary goal for comparison, but to highlight that it may not be suitable in the presence of highly skewed data. Our results showed that the ZABS model presented better results in terms of both precision and goodness of fit, with this comparison studied specifically within the context of the real-world nutritional epidemiology dataset. Finally, the evaluation of different prior inputs for the covariance matrix of the random effects in prior sensitivity analysis provided valuable insights.

Suggested Citation

  • Claudia Akemy Koda & Mariana Rodrigues-Motta & Filidor Edilfonso Vilca Labra & Elainy Marciano Batista & Eliseu Verly, 2025. "Bayesian zero-augmented Birnbaum–Saunders multilevel random effects model: an application to dietary consumption," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 34(4), pages 727-751, September.
  • Handle: RePEc:spr:stmapp:v:34:y:2025:i:4:d:10.1007_s10260-025-00802-3
    DOI: 10.1007/s10260-025-00802-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-025-00802-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-025-00802-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Nan M. Laird, 2022. "Statistical analysis of longitudinal studies," International Statistical Review, International Statistical Institute, vol. 90(S1), pages 2-16, December.
    2. Xiaodong Jin & Janusz Kawczak, 2003. "Birnbaum-Saunders and Lognormal Kernel Estimators for Modelling Durations in High Frequency Financial Data," Annals of Economics and Finance, Society for AEF, vol. 4(1), pages 103-124, May.
    3. Victor Kipnis & Douglas Midthune & Dennis W. Buckman & Kevin W. Dodd & Patricia M. Guenther & Susan M. Krebs-Smith & Amy F. Subar & Janet A. Tooze & Raymond J. Carroll & Laurence S. Freedman, 2009. "Modeling Data with Excess Zeros and Measurement Error: Application to Evaluating Relationships between Episodically Consumed Foods and Health Outcomes," Biometrics, The International Biometric Society, vol. 65(4), pages 1003-1010, December.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Peter Wanke & Víctor Leiva, 2015. "Exploring the Potential Use of the Birnbaum-Saunders Distribution in Inventory Management," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, October.
    6. Arnab Kumar Maity & Sanjib Basu & Santu Ghosh, 2021. "Bayesian criterion‐based variable selection," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 835-857, August.
    7. Giovana Fumes-Ghantous & Silvia L. P. Ferrari & José Eduardo Corrente, 2018. "Box–Cox t random intercept model for estimating usual nutrient intake distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 715-734, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    2. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    3. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    4. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    5. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    6. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    7. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Cristian David Correa-Álvarez & Juan Carlos Salazar-Uribe & Luis Raúl Pericchi-Guerra, 2023. "Bayesian multilevel logistic regression models: a case study applied to the results of two questionnaires administered to university students," Computational Statistics, Springer, vol. 38(4), pages 1791-1810, December.
    10. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    11. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    12. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
    13. David Macro & Jeroen Weesie, 2016. "Inequalities between Others Do Matter: Evidence from Multiplayer Dictator Games," Games, MDPI, vol. 7(2), pages 1-23, April.
    14. Tautenhahn, Susanne & Heilmeier, Hermann & Jung, Martin & Kahl, Anja & Kattge, Jens & Moffat, Antje & Wirth, Christian, 2012. "Beyond distance-invariant survival in inverse recruitment modeling: A case study in Siberian Pinus sylvestris forests," Ecological Modelling, Elsevier, vol. 233(C), pages 90-103.
    15. Julian P. T. Higgins & Simon G. Thompson & David J. Spiegelhalter, 2009. "A re‐evaluation of random‐effects meta‐analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 137-159, January.
    16. Simon Mak & Derek Bingham & Yi Lu, 2016. "A regional compound Poisson process for hurricane and tropical storm damage," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 677-703, November.
    17. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    18. Huang, Zhaodong & Chien, Steven & Zhu, Wei & Zheng, Pengjun, 2022. "Scheduling wheel inspection for sustainable urban rail transit operation: A Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 586(C).
    19. Jorge I. Figueroa-Zúñiga & Cristian L. Bayes & Víctor Leiva & Shuangzhe Liu, 2022. "Robust beta regression modeling with errors-in-variables: a Bayesian approach and numerical applications," Statistical Papers, Springer, vol. 63(3), pages 919-942, June.
    20. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:34:y:2025:i:4:d:10.1007_s10260-025-00802-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.