IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v26y2017i4d10.1007_s10260-017-0380-4.html
   My bibliography  Save this article

Small area estimation based on M-quantile models in presence of outliers in auxiliary variables

Author

Listed:
  • Stefano Marchetti

    (University of Pisa)

  • Caterina Giusti

    (University of Pisa)

  • Nicola Salvati

    (University of Pisa)

  • Monica Pratesi

    (University of Pisa)

Abstract

When using small area estimation models, the presence of outlying observations in the response and/or in the auxiliary variables can severely affect the estimates of the model parameters, which can in turn affect the small area estimates produced using these models. In this paper we propose an M-quantile estimator of the small area mean that is robust to the presence of outliers in the response variable and in the continuous auxiliary variables. To estimate the variability of this estimator we propose a non-parametric bootstrap estimator. The performance of the proposed estimator is evaluated by means of model- and design-based simulations and by an application to real data. In these comparisons we also include the extension of the Robust EBLUP able to down-weight the outliers in the auxiliary variables. The results show that in the presence of outliers in the auxiliary variables the proposed estimator outperforms its traditional version that takes into account the presence of outliers only in the response variable.

Suggested Citation

  • Stefano Marchetti & Caterina Giusti & Nicola Salvati & Monica Pratesi, 2017. "Small area estimation based on M-quantile models in presence of outliers in auxiliary variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 531-555, November.
  • Handle: RePEc:spr:stmapp:v:26:y:2017:i:4:d:10.1007_s10260-017-0380-4
    DOI: 10.1007/s10260-017-0380-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0380-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0380-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    2. Ray Chambers & Nikos Tzavidis, 2006. "M-quantile models for small area estimation," Biometrika, Biometrika Trust, vol. 93(2), pages 255-268, June.
    3. Filzmoser, Peter & Maronna, Ricardo & Werner, Mark, 2008. "Outlier identification in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1694-1711, January.
    4. Koller, Manuel & Stahel, Werner A., 2011. "Sharpening Wald-type inference in robust regression for small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2504-2515, August.
    5. Hayfield, Tristen & Racine, Jeffrey S., 2008. "Nonparametric Econometrics: The np Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i05).
    6. Ray Chambers & Hukum Chandra & Nicola Salvati & Nikos Tzavidis, 2014. "Outlier robust small area estimation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 47-69, January.
    7. Malay Ghosh & Karabi Sinha & Dalho Kim, 2006. "Empirical and Hierarchical Bayesian Estimation in Finite Population Sampling under Structural Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 591-608, September.
    8. V. Dongmo Jiongo & D. Haziza & P. Duchesne, 2013. "Controlling the bias of robust small-area estimators," Biometrika, Biometrika Trust, vol. 100(4), pages 843-858.
    9. Jiming Jiang & P. Lahiri, 2006. "Mixed model prediction and small area estimation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-96, June.
    10. Lynn M. R. Ybarra & Sharon L. Lohr, 2008. "Small area estimation when auxiliary information is measured with error," Biometrika, Biometrika Trust, vol. 95(4), pages 919-931.
    11. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238, April.
    12. Ray Chambers & Nicola Salvati & Nikos Tzavidis, 2016. "Semiparametric small area estimation for binary outcomes with application to unemployment estimation for local authorities in the UK," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 453-479, February.
    13. Kokic, Philip, et al, 1997. "A Measure of Production Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(4), pages 445-451, October.
    14. Mahmoud Torabi & Gauri S. Datta & J. N. K. Rao, 2009. "Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 355-369, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. K. Shuvo Bakar & Nicholas Biddle & Philip Kokic & Huidong Jin, 2020. "A Bayesian spatial categorical model for prediction to overlapping geographical areas in sample surveys," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(2), pages 535-563, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. N. K. Rao, 2015. "Inferential issues in model-based small area estimation: some new developments," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(4), pages 491-510, December.
    2. J. N. K. Rao, 2015. "Inferential Issues In Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Polish Statistical Association, vol. 16(4), pages 491-510, December.
    3. Baldermann, Claudia & Salvati, Nicola & Schmid, Timo, 2016. "Robust small area estimation under spatial non-stationarity," Discussion Papers 2016/5, Free University Berlin, School of Business & Economics.
    4. Rao J. N. K., 2015. "Inferential Issues in Model-Based Small Area Estimation: Some New Developments," Statistics in Transition New Series, Statistics Poland, vol. 16(4), pages 491-510, December.
    5. Timo Schmid & Nikos Tzavidis & Ralf Münnich & Ray Chambers, 2016. "Outlier Robust Small-Area Estimation Under Spatial Correlation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 806-826, September.
    6. Domingo Morales & Joscha Krause & Jan Pablo Burgard, 2022. "On the Use of Aggregate Survey Data for Estimating Regional Major Depressive Disorder Prevalence," Psychometrika, Springer;The Psychometric Society, vol. 87(1), pages 344-368, March.
    7. G. Bertarelli & R. Chambers & N. Salvati, 2021. "Outlier robust small domain estimation via bias correction and robust bootstrapping," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 331-357, March.
    8. Datta, Gauri S. & Torabi, Mahmoud & Rao, J.N.K. & Liu, Benmei, 2018. "Small area estimation with multiple covariates measured with errors: A nested error linear regression approach of combining multiple surveys," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 49-59.
    9. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    10. Priyanka Anjoy, 2023. "Hierarchical Bayes Measurement Error Small Area Model for Estimation of Disaggregated Level Workers Mobility Pattern in India," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(2), pages 339-361, June.
    11. Isabel Molina & Paul Corral & Minh Nguyen, 2022. "Estimation of poverty and inequality in small areas: review and discussion," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 1143-1166, December.
    12. Schmid, Timo & Tzavidis, Nikos & Münnich, Ralf & Chambers, Ray, 2015. "Outlier robust small area estimation under spatial correlation," Discussion Papers 2015/8, Free University Berlin, School of Business & Economics.
    13. Marchetti, Stefano & Tzavidis, Nikos & Pratesi, Monica, 2012. "Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators," Computational Statistics & Data Analysis, Elsevier, vol. 56(10), pages 2889-2902.
    14. Marchetti Stefano & Giusti Caterina & Pratesi Monica & Salvati Nicola & Giannotti Fosca & Pedreschi Dino & Rinzivillo Salvatore & Pappalardo Luca & Gabrielli Lorenzo, 2015. "Small Area Model-Based Estimators Using Big Data Sources," Journal of Official Statistics, Sciendo, vol. 31(2), pages 263-281, June.
    15. Otto-Sobotka, Fabian & Salvati, Nicola & Ranalli, Maria Giovanna & Kneib, Thomas, 2019. "Adaptive semiparametric M-quantile regression," Econometrics and Statistics, Elsevier, vol. 11(C), pages 116-129.
    16. repec:csb:stintr:v:17:y:2016:i:1:p:9-24 is not listed on IDEAS
    17. Erciulescu Andreea L. & Fuller Wayne A., 2016. "Small Area Prediction Under Alternative Model Specifications," Statistics in Transition New Series, Statistics Poland, vol. 17(1), pages 9-24, March.
    18. Torabi, Mahmoud, 2012. "Small area estimation using survey weights under a nested error linear regression model with structural measurement error," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 52-60.
    19. N. Salvati & N. Tzavidis & M. Pratesi & R. Chambers, 2012. "Small area estimation via M-quantile geographically weighted regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 1-28, March.
    20. Valéry Dongmo Jiongo & Pierre Nguimkeu, 2018. "Bootstrapping Mean Squared Errors of Robust Small-Area Estimators: Application to the Method-of-Payments Data," Staff Working Papers 18-28, Bank of Canada.
    21. Stefano Marchetti & Maciej Beręsewicz & Nicola Salvati & Marcin Szymkowiak & Łukasz Wawrowski, 2018. "The use of a three‐level M‐quantile model to map poverty at local administrative unit 1 in Poland," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1077-1104, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:26:y:2017:i:4:d:10.1007_s10260-017-0380-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.