IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Non-parametric bootstrap mean squared error estimation for M-quantile estimators of small area averages, quantiles and poverty indicators

  • Marchetti, Stefano
  • Tzavidis, Nikos
  • Pratesi, Monica
Registered author(s):

    Small area estimation is conventionally concerned with the estimation of small area averages and totals. More recently emphasis has been also placed on the estimation of poverty indicators and of key quantiles of the small area distribution function using robust models, for example, the M-quantile small area model. In parallel to point estimation, Mean Squared Error (MSE) estimation is an equally crucial and challenging task. However, while analytic MSE estimation for small area averages is possible, analytic MSE estimation for quantiles and poverty indicators is difficult. Moreover, one of the main criticisms of the analytic MSE estimator for M-quantile estimates of small area averages is that it can be unstable when the area-specific sample sizes are small. A non-parametric bootstrap framework for MSE estimation for small area averages, quantiles and poverty indicators estimated with the M-quantile small area model is proposed. Emphasis is placed on second order properties of MSE estimators with results suggesting that the bootstrap MSE estimator is more stable than corresponding analytic MSE estimators. The proposed bootstrap is evaluated in a series of simulation studies under different parametric assumptions for the model error terms and different scenarios for the area-specific sample and population sizes. Finally, results from the application of the proposed MSE estimator to real income data from the European Survey of Income and Living Conditions (EU-SILC) in Italy are presented and information on the availability of R functions that can be used for implementing the proposed estimation procedures in practice is provided.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312000631
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 56 (2012)
    Issue (Month): 10 ()
    Pages: 2889-2902

    as
    in new window

    Handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2889-2902
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:56:y:2012:i:10:p:2889-2902. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.