IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03181017.html

Extremile regression

Author

Listed:
  • Abdelaati Daouia

    (TSE-R - Toulouse School of Economics - UT Capitole - Université Toulouse Capitole - Comue de Toulouse - Communauté d'universités et établissements de Toulouse - EHESS - École des hautes études en sciences sociales - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Irene Gijbels
  • Gilles Stupfler

Abstract

Regression extremiles define a least squares analogue of regression quantiles. They are determined by weighted expectations rather than tail probabilities. Of special interest is their intuitive meaning in terms of expected minima and maxima. Their use appears naturally in risk management where, in contrast to quantiles, they fulfill the coherency axiom and take the severity of tail losses into account. In addition, they are comonotonically additive and belong to both the families of spectral risk measures and concave distortion risk measures. This paper provides the first detailed study exploring implications of the extremile terminology in a general setting of presence of covariates. We rely on local linear (least squares) check function minimization for estimating conditional extremiles and deriving the asymptotic normality of their estimators. We also extend extremile regression far into the tails of heavy-tailed distributions. Extrapolated estimators are constructed and their asymptotic theory is developed. Some applications to real data are provided.

Suggested Citation

  • Abdelaati Daouia & Irene Gijbels & Gilles Stupfler, 2021. "Extremile regression," Post-Print hal-03181017, HAL.
  • Handle: RePEc:hal:journl:hal-03181017
    DOI: 10.1080/01621459.2021.1875837
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Yu & Ma, Mengyuan & Sun, Hongfang, 2023. "Statistical inference for extreme extremile in heavy-tailed heteroscedastic regression model," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 142-162.
    2. Christis Katsouris, 2023. "Quantile Time Series Regression Models Revisited," Papers 2308.06617, arXiv.org, revised Aug 2023.
    3. Mohamed Ouhourane & Karim Oualkacha & Archer Yi Yang, 2024. "Group penalized expectile regression," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(5), pages 1251-1313, November.
    4. Christis Katsouris, 2024. "Robust Estimation in Network Vector Autoregression with Nonstationary Regressors," Papers 2401.04050, arXiv.org.
    5. Abdelaati Daouia & Irène Gijbels & Gilles Stupfler, 2022. "Extremile Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(539), pages 1579-1586, September.
    6. Genest Christian & Scherer Matthias, 2023. "When copulas and smoothing met: An interview with Irène Gijbels," Dependence Modeling, De Gruyter, vol. 11(1), pages 1-16, January.
    7. Righi, Marcelo Brutti & Müller, Fernanda Maria & Moresco, Marlon Ruoso, 2025. "A risk measurement approach from risk-averse stochastic optimization of score functions," Insurance: Mathematics and Economics, Elsevier, vol. 120(C), pages 42-50.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03181017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.