IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Small area estimation using survey weights under a nested error linear regression model with structural measurement error

Listed author(s):
  • Torabi, Mahmoud
Registered author(s):

    Previously, the nested error linear regression models using survey weights have been studied in small area estimation to obtain efficient model-based and design-consistent estimators of small area means. In particular, the pseudo-empirical Bayes (PEB) using survey weights has received a lot of attention and is being used in statistical agencies. The covariates in these nested error linear regression models are not subject to measurement errors. However, there are many situations that the covariates are subject to measurement errors. In this paper, we develop a nested error linear regression model with an area-level covariate subject to structural measurement error. In particular, we propose a PEB estimator to estimate small area means. This estimator borrows strength across areas through the model and makes use of the survey weights to preserve the design consistency as the area sample size increases. We also employ a parametric bootstrap approach to estimate the mean squared prediction error (MSPE) of the PEB predictor. Finally, we report the results of a simulation study on the performance of our PEB predictor and associated bootstrap MSPE estimator.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Journal of Multivariate Analysis.

    Volume (Year): 109 (2012)
    Issue (Month): C ()
    Pages: 52-60

    in new window

    Handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:52-60
    DOI: 10.1016/j.jmva.2012.02.015
    Contact details of provider: Web page:

    Order Information: Postal:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Malay Ghosh & Karabi Sinha & Dalho Kim, 2006. "Empirical and Hierarchical Bayesian Estimation in Finite Population Sampling under Structural Measurement Error Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 591-608.
    2. Peter Hall & Tapabrata Maiti, 2006. "On parametric bootstrap methods for small area prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 221-238.
    3. Mahmoud Torabi & Gauri S. Datta & J. N. K. Rao, 2009. "Empirical Bayes Estimation of Small Area Means under a Nested Error Linear Regression Model with Measurement Errors in the Covariates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(2), pages 355-369.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:109:y:2012:i:c:p:52-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.