Author
Listed:
- Onuchukwu Godwin Chike
(Universiti Teknologi Malaysia
Nigerian Army University Biu)
- Yee Jian Chin
(Universiti Teknologi Malaysia)
- Norhayati Ahmad
(Universiti Teknologi Malaysia)
- Wan Fahmin Faiz Wan Ali
(Universiti Teknologi Malaysia)
Abstract
This paper critically examined the research landscape and the impact of machine learning (ML) on additive manufacturing (AM) through publication trends, bibliometric analyses, and literature review. The Elsevier Scopus database was selected to identify and recover publications on ML in AM research published from 2013 to 2022 based on the PRISMA approach. The recovered bibliographic data was analyzed using VOSviewer software to examine the co-authorship, keyword, and citation networks on the ML in AM research. Results showed that the publications output (and citations count) increased progressively from 1 (19) to 375 (980) from 2013 to 2022, which exhibits the high total citation to total publication ratio typically characteristic of highly impactful fields with future growth potentials. Analysis of top performers on the topic revealed that Prahalada K. Rao (USA), Pennsylvania State University (USA), and National Science Foundation (USA) are the most prolific authors, affiliations, and funder of ML in AM research, respectively. Hence, the most active nation on ML in AM research is the USA, although China and the UK have also made significant contributions over the years. Keyword occurrence revealed the existence of several research hotspots with researchers’ interests directed at basic research, optimization studies, industrial applications, and novel learning systems. The paper showed that ML in AM is a broad, complex, and impactful research area that will continue to experience scientific growth and technological development, mainly due to the growing demands for accurate computational methods for AM prototypes, processes, and products.
Suggested Citation
Onuchukwu Godwin Chike & Yee Jian Chin & Norhayati Ahmad & Wan Fahmin Faiz Wan Ali, 2025.
"Impact of Machine/Deep Learning on Additive Manufacturing: Publication Trends, Bibliometric Analysis, and Literature Review (2013–2022),"
SN Operations Research Forum, Springer, vol. 6(2), pages 1-29, June.
Handle:
RePEc:spr:snopef:v:6:y:2025:i:2:d:10.1007_s43069-025-00440-1
DOI: 10.1007/s43069-025-00440-1
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:snopef:v:6:y:2025:i:2:d:10.1007_s43069-025-00440-1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.