IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v33y2022i5d10.1007_s10845-020-01725-4.html
   My bibliography  Save this article

Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning

Author

Listed:
  • Chunyang Xia

    (University of Wollongong
    Shanghai Jiao Tong University)

  • Zengxi Pan

    (University of Wollongong)

  • Joseph Polden

    (University of Wollongong)

  • Huijun Li

    (University of Wollongong)

  • Yanling Xu

    (Shanghai Jiao Tong University)

  • Shanben Chen

    (Shanghai Jiao Tong University)

Abstract

WAAM has been proven a promising alternative to fabricate medium and large scale metal parts with a high depositing rate and automation level. However, the production quality may deteriorate due to the poor deposited layer surface quality. In this paper, a laser sensor based surface roughness measuring method was developed for WAAM. To improve the surface integrity of deposited layers by WAAM, different machine learning models, including ANFIS, ELM and SVR, were developed to predict the surface roughness. Furthermore, the ANFIS model was optimized by GA and PSO algorithms. Full factorial experiments were conducted to obtain the training data, and the K-fold Cross-validation strategy was applied to train and validate machine learning models. The comparison results indicate that GA–ANFIS has superiority in predicting surface roughness. The RMSE, $$ R^{2} $$ R 2 , MAE and MAPE for GA–ANFIS were 0.0694, 0.93516, 0.0574, 14.15% respectively. This study could also provide inspiration and guidance for surface roughness modelling in multipass arc welding and cladding.

Suggested Citation

  • Chunyang Xia & Zengxi Pan & Joseph Polden & Huijun Li & Yanling Xu & Shanben Chen, 2022. "Modelling and prediction of surface roughness in wire arc additive manufacturing using machine learning," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1467-1482, June.
  • Handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01725-4
    DOI: 10.1007/s10845-020-01725-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-020-01725-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-020-01725-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shifei Ding & Nan Zhang & Xinzheng Xu & Lili Guo & Jian Zhang, 2015. "Deep Extreme Learning Machine and Its Application in EEG Classification," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-11, May.
    2. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    3. Zeqi Hu & Xunpeng Qin & Yifeng Li & Jiuxin Yuan & Qiang Wu, 2020. "Multi-bead overlapping model with varying cross-section profile for robotic GMAW-based additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(5), pages 1133-1147, June.
    4. Maraboina Raju & Munish Kumar Gupta & Neeraj Bhanot & Vishal S. Sharma, 2019. "A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters," Journal of Intelligent Manufacturing, Springer, vol. 30(7), pages 2743-2758, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyuan Xie & Fan Chen & Lu Wang & Wenjun Ge & Wentao Yan, 2024. "Data-driven prediction of keyhole features in metal additive manufacturing based on physics-based simulation," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 2313-2326, June.
    2. Giulio Mattera & Luigi Nele & Davide Paolella, 2024. "Monitoring and control the Wire Arc Additive Manufacturing process using artificial intelligence techniques: a review," Journal of Intelligent Manufacturing, Springer, vol. 35(2), pages 467-497, February.
    3. Jyothi Padmaja Koduru & T. Vijay Kumar & Kedar Mallik Mantrala, 2024. "A review of wire and arc additive manufacturing using different property characterization, challenges and future trends," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4563-4581, September.
    4. Pengfei Wang & Jinkun Deng & Xu Li & Changchun Hua & Lihong Su & Guanyu Deng, 2024. "A novel strategy based on machine learning of selective cooling control of work roll for improvement of cold rolled strip flatness," Journal of Intelligent Manufacturing, Springer, vol. 35(7), pages 3559-3576, October.
    5. Onuchukwu Godwin Chike & Yee Jian Chin & Norhayati Ahmad & Wan Fahmin Faiz Wan Ali, 2025. "Impact of Machine/Deep Learning on Additive Manufacturing: Publication Trends, Bibliometric Analysis, and Literature Review (2013–2022)," SN Operations Research Forum, Springer, vol. 6(2), pages 1-29, June.
    6. Abderrachid Hamrani & Arvind Agarwal & Amine Allouhi & Dwayne McDaniel, 2024. "Applying machine learning to wire arc additive manufacturing: a systematic data-driven literature review," Journal of Intelligent Manufacturing, Springer, vol. 35(6), pages 2407-2439, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.
    2. T. Herzog & M. Brandt & A. Trinchi & A. Sola & A. Molotnikov, 2024. "Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1407-1437, April.
    3. Sanath Alahakoon & Rajib Baran Roy & Shantha Jayasinghe Arachchillage, 2023. "Optimizing Load Frequency Control in Standalone Marine Microgrids Using Meta-Heuristic Techniques," Energies, MDPI, vol. 16(13), pages 1-23, June.
    4. Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
    5. Weiyu Wang & Xunxin Zhao & Lijun Luo & Pei Zhang & Fan Mo & Fei Chen & Diyi Chen & Fengjiao Wu & Bin Wang, 2022. "A Fault Diagnosis Method of Rolling Bearing Based on Attention Entropy and Adaptive Deep Kernel Extreme Learning Machine," Energies, MDPI, vol. 15(22), pages 1-19, November.
    6. Chen-Fu Chien & Jia-Yu Peng, 2025. "Bayesian inference for multi-label classification for root cause analysis and probe card maintenance decision support and an empirical study," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1943-1958, March.
    7. Hong Seok Park & Dinh Son Nguyen & Thai Le-Hong & Xuan Tran, 2022. "Machine learning-based optimization of process parameters in selective laser melting for biomedical applications," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1843-1858, August.
    8. Yilin Guo & Wen Feng Lu & Jerry Ying Hsi Fuh, 2021. "Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process," Journal of Intelligent Manufacturing, Springer, vol. 32(2), pages 347-359, February.
    9. Jingchang Li & Qi Zhou & Xufeng Huang & Menglei Li & Longchao Cao, 2023. "In situ quality inspection with layer-wise visual images based on deep transfer learning during selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 34(2), pages 853-867, February.
    10. Mohammad Borumand & Saideep Nannapaneni & Gurucharan Madiraddy & Michael P. Sealy & Sima Esfandiarpour Borujeni & Gisuk Hwang, 2025. "Smart process mapping of powder bed fusion additively manufactured metallic wicks using surrogate modeling," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 1819-1833, March.
    11. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    12. Tamie Takeda Yokoyama & Satie Ledoux Takeda-Berger & Marco Aurélio Oliveira & Andre Hideto Futami & Luiz Veriano Oliveira Dalla Valentina & Enzo Morosini Frazzon, 2023. "Bayesian networks as a guide to value stream mapping for lean office implementation: a proposed framework," Operations Management Research, Springer, vol. 16(1), pages 49-79, March.
    13. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    14. Jingchang Li & Longchao Cao & Jiexiang Hu & Minhua Sheng & Qi Zhou & Peng Jin, 2022. "A prediction approach of SLM based on the ensemble of metamodels considering material efficiency, energy consumption, and tensile strength," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 687-702, March.
    15. Haijie Wang & Bo Li & Saifan Zhang & Fuzhen Xuan, 2025. "Traditional machine learning and deep learning for predicting melt-pool cross-sectional morphology of laser powder bed fusion additive manufacturing with thermographic monitoring," Journal of Intelligent Manufacturing, Springer, vol. 36(3), pages 2079-2104, March.
    16. Paromita Nath & Sankaran Mahadevan, 2023. "Probabilistic predictive control of porosity in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1085-1103, March.
    17. Vivek Mahato & Muhannad Ahmed Obeidi & Dermot Brabazon & Pádraig Cunningham, 2022. "Detecting voids in 3D printing using melt pool time series data," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 845-852, March.
    18. Mumin Zhang & Yuzhi Wang & Haochen Zhang & Zhiyun Peng & Junjie Tang, 2023. "A Novel and Robust Wind Speed Prediction Method Based on Spatial Features of Wind Farm Cluster," Mathematics, MDPI, vol. 11(3), pages 1-17, January.
    19. Osama Aljarrah & Jun Li & Alfa Heryudono & Wenzhen Huang & Jing Bi, 2023. "Predicting part distortion field in additive manufacturing: a data-driven framework," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1975-1993, April.
    20. Nicholas Satterlee & Elisa Torresani & Eugene Olevsky & John S. Kang, 2024. "Automatic detection and characterization of porosities in cross-section images of metal parts produced by binder jetting using machine learning and image augmentation," Journal of Intelligent Manufacturing, Springer, vol. 35(3), pages 1281-1303, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:33:y:2022:i:5:d:10.1007_s10845-020-01725-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.