IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02396-1.html
   My bibliography  Save this article

Leveraging computer vision towards high-efficiency autonomous industrial facilities

Author

Listed:
  • Ibrahim Yousif

    (University of South Carolina)

  • Liam Burns

    (University of South Carolina)

  • Fadi El Kalach

    (University of South Carolina)

  • Ramy Harik

    (University of South Carolina)

Abstract

Manufacturers face two opposing challenges: the escalating demand for customized products and the pressure to reduce delivery lead times. To address these expectations, manufacturers must refine their processes, to achieve highly efficient and autonomous operations. Current manufacturing equipment deployed in several facilities, while reliable and produces quality products, often lacks the ability to utilize advancements from newer technologies. Since replacing legacy equipment may be financially infeasible for many manufacturers, implementing digital transformation practices and technologies can overcome the stated deficiencies and offer cost-affordable initiatives to improve operations, increase productivity, and reduce costs. This paper explores the implementation of computer vision, as a cutting-edge, cost-effective, open-source digital transformation technology in manufacturing facilities. As a rapidly advancing technology, computer vision has the potential to transform manufacturing operations in general, and quality control in particular. The study integrates a digital twin application at the endpoint of an assembly line, effectively performing the role of a quality officer by utilizing state-of-the-art computer vision algorithms to validate end-product assembly orientation. The proposed digital twin, featuring a novel object recognition approach, efficiently classifies objects, identifies and segments errors in assembly, and schedules the paths through the data pipeline to the corresponding robot for autonomous correction. This minimizes the need for human interaction and reduces disruptions to manufacturing operations.

Suggested Citation

  • Ibrahim Yousif & Liam Burns & Fadi El Kalach & Ramy Harik, 2025. "Leveraging computer vision towards high-efficiency autonomous industrial facilities," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 2983-3008, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1
    DOI: 10.1007/s10845-024-02396-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02396-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02396-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.