IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v36y2025i5d10.1007_s10845-024-02396-1.html
   My bibliography  Save this article

Leveraging computer vision towards high-efficiency autonomous industrial facilities

Author

Listed:
  • Ibrahim Yousif

    (University of South Carolina)

  • Liam Burns

    (University of South Carolina)

  • Fadi El Kalach

    (University of South Carolina)

  • Ramy Harik

    (University of South Carolina)

Abstract

Manufacturers face two opposing challenges: the escalating demand for customized products and the pressure to reduce delivery lead times. To address these expectations, manufacturers must refine their processes, to achieve highly efficient and autonomous operations. Current manufacturing equipment deployed in several facilities, while reliable and produces quality products, often lacks the ability to utilize advancements from newer technologies. Since replacing legacy equipment may be financially infeasible for many manufacturers, implementing digital transformation practices and technologies can overcome the stated deficiencies and offer cost-affordable initiatives to improve operations, increase productivity, and reduce costs. This paper explores the implementation of computer vision, as a cutting-edge, cost-effective, open-source digital transformation technology in manufacturing facilities. As a rapidly advancing technology, computer vision has the potential to transform manufacturing operations in general, and quality control in particular. The study integrates a digital twin application at the endpoint of an assembly line, effectively performing the role of a quality officer by utilizing state-of-the-art computer vision algorithms to validate end-product assembly orientation. The proposed digital twin, featuring a novel object recognition approach, efficiently classifies objects, identifies and segments errors in assembly, and schedules the paths through the data pipeline to the corresponding robot for autonomous correction. This minimizes the need for human interaction and reduces disruptions to manufacturing operations.

Suggested Citation

  • Ibrahim Yousif & Liam Burns & Fadi El Kalach & Ramy Harik, 2025. "Leveraging computer vision towards high-efficiency autonomous industrial facilities," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 2983-3008, June.
  • Handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1
    DOI: 10.1007/s10845-024-02396-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-024-02396-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-024-02396-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Salomé Sanchez & Divish Rengasamy & Christopher J. Hyde & Grazziela P. Figueredo & Benjamin Rothwell, 2021. "Machine learning to determine the main factors affecting creep rates in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2353-2373, December.
    2. Gautam Dutta & Ravinder Kumar & Rahul Sindhwani & Rajesh Kr. Singh, 2021. "Digitalization priorities of quality control processes for SMEs: a conceptual study in perspective of Industry 4.0 adoption," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1679-1698, August.
    3. Marco Brysch & Mohammad Bahar & Hans Christoph Hohensee & Michael Sinapius, 2022. "Single system for online monitoring and inspection of automated fiber placement with object segmentation by artificial neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(7), pages 2013-2025, October.
    4. Chung-Feng Jeffrey Kuo & Chun-Ping Tung & Wei-Han Weng, 2019. "Applying the support vector machine with optimal parameter design into an automatic inspection system for classifying micro-defects on surfaces of light-emitting diode chips," Journal of Intelligent Manufacturing, Springer, vol. 30(2), pages 727-741, February.
    5. Olatomiwa Badmos & Andreas Kopp & Timo Bernthaler & Gerhard Schneider, 2020. "Image-based defect detection in lithium-ion battery electrode using convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 885-897, April.
    6. Hui Lin & Bin Li & Xinggang Wang & Yufeng Shu & Shuanglong Niu, 2019. "Automated defect inspection of LED chip using deep convolutional neural network," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2525-2534, August.
    7. Masoumeh Aminzadeh & Thomas R. Kurfess, 2019. "Online quality inspection using Bayesian classification in powder-bed additive manufacturing from high-resolution visual camera images," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2505-2523, August.
    8. Ercan Oztemel & Samet Gursev, 2020. "Literature review of Industry 4.0 and related technologies," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 127-182, January.
    9. Sebastian Meister & Mahdieu A. M. Wermes & Jan Stüve & Roger M. Groves, 2021. "Review of image segmentation techniques for layup defect detection in the Automated Fiber Placement process," Journal of Intelligent Manufacturing, Springer, vol. 32(8), pages 2099-2119, December.
    10. Te-Hsiu Sun & Fang-Cheng Tien & Fang-Chih Tien & Ren-Jieh Kuo, 2016. "Automated thermal fuse inspection using machine vision and artificial neural networks," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 639-651, June.
    11. Tobias Schlosser & Michael Friedrich & Frederik Beuth & Danny Kowerko, 2022. "Improving automated visual fault inspection for semiconductor manufacturing using a hybrid multistage system of deep neural networks," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1099-1123, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Swarit Anand Singh & K. A. Desai, 2023. "Automated surface defect detection framework using machine vision and convolutional neural networks," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 1995-2011, April.
    2. Xinyu Suo & Jian Liu & Licheng Dong & Chen Shengfeng & Lu Enhui & Chen Ning, 2022. "A machine vision-based defect detection system for nuclear-fuel rod groove," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1649-1663, August.
    3. Jože M. Rožanec & Luka Bizjak & Elena Trajkova & Patrik Zajec & Jelle Keizer & Blaž Fortuna & Dunja Mladenić, 2024. "Active learning and novel model calibration measurements for automated visual inspection in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 35(5), pages 1963-1984, June.
    4. Nhat-To Huynh, 2024. "A multi-subpopulation genetic algorithm-based CNN approach for ceramic tile defects classification," Journal of Intelligent Manufacturing, Springer, vol. 35(4), pages 1781-1792, April.
    5. Diyi Zhou & Shihua Gong & Ziyue Wang & Delong Li & Huaiqing Lu, 2021. "Error analysis based on error transfer theory and compensation strategy for LED chip visual localization systems," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1345-1359, June.
    6. Chia-Yu Hsu & Ju-Chien Chien, 2022. "Ensemble convolutional neural networks with weighted majority for wafer bin map pattern classification," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 831-844, March.
    7. Thomas Mignot & François Ponchon & Alexandre Derville & Stefan Duffner & Christophe Garcia, 2025. "An automatic inspection system for the detection of tire surface defects and their severity classification through a two-stage multimodal deep learning approach," Journal of Intelligent Manufacturing, Springer, vol. 36(5), pages 3427-3445, June.
    8. Feiyang Li & Nian Cai & Xueliang Deng & Jiahao Li & Jianfa Lin & Han Wang, 2022. "Serial number inspection for ceramic membranes via an end-to-end photometric-induced convolutional neural network framework," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1373-1392, June.
    9. Ying Zhang & Mutahar Safdar & Jiarui Xie & Jinghao Li & Manuel Sage & Yaoyao Fiona Zhao, 2023. "A systematic review on data of additive manufacturing for machine learning applications: the data quality, type, preprocessing, and management," Journal of Intelligent Manufacturing, Springer, vol. 34(8), pages 3305-3340, December.
    10. Omid Davtalab & Ali Kazemian & Xiao Yuan & Behrokh Khoshnevis, 2022. "Automated inspection in robotic additive manufacturing using deep learning for layer deformation detection," Journal of Intelligent Manufacturing, Springer, vol. 33(3), pages 771-784, March.
    11. Saksham Jain & Gautam Seth & Arpit Paruthi & Umang Soni & Girish Kumar, 2022. "Synthetic data augmentation for surface defect detection and classification using deep learning," Journal of Intelligent Manufacturing, Springer, vol. 33(4), pages 1007-1020, April.
    12. Nhat-To Huynh & Duong-Dong Ho & Hong-Nguyen Nguyen, 2023. "An Approach for Designing an Optimal CNN Model Based on Auto-Tuning GA with 2D Chromosome for Defect Detection and Classification," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    13. Chenglin Li & Baohai Wu & Zhao Zhang & Ying Zhang, 2023. "A novel process planning method of 3 + 2-axis additive manufacturing for aero-engine blade based on machine learning," Journal of Intelligent Manufacturing, Springer, vol. 34(4), pages 2027-2042, April.
    14. Dinko Herman BOIKANYO, 2024. "Utilization Of 4ir Technologies To Enhance Strategic Intelligence And Dynamic Capabilities For A Sustainable Competitive Advantage," Business Excellence and Management, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 14(1), pages 5-24, March.
    15. Huazhe Wang & Li Ma, 2024. "MCMC algorithm based on Markov random field in image segmentation," PLOS ONE, Public Library of Science, vol. 19(2), pages 1-19, February.
    16. Shuxuan Zhao & Ray Y. Zhong & Chuqiao Xu & Junliang Wang & Jie Zhang, 2025. "A dynamic inference network (DI-Net) for online fabric defect detection in smart manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 36(4), pages 2881-2896, April.
    17. Govindan, Kannan & Kannan, Devika & Jørgensen, Thomas Ballegård & Nielsen, Tim Straarup, 2022. "Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    18. Tiago Afonso & Anabela C. Alves & Paula Carneiro, 2021. "Lean Thinking, Logistic and Ergonomics: Synergetic Triad to Prepare Shop Floor Work Systems to Face Pandemic Situations," International Journal of Global Business and Competitiveness, Springer, vol. 16(1), pages 62-76, December.
    19. Shuting Wang & Jie Meng & Yuanlong Xie & Liquan Jiang & Han Ding & Xinyu Shao, 2023. "Reference training system for intelligent manufacturing talent education: platform construction and curriculum development," Journal of Intelligent Manufacturing, Springer, vol. 34(3), pages 1125-1164, March.
    20. Yong Ren & Qian Wang, 2022. "Gaussian-process based modeling and optimal control of melt-pool geometry in laser powder bed fusion," Journal of Intelligent Manufacturing, Springer, vol. 33(8), pages 2239-2256, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:36:y:2025:i:5:d:10.1007_s10845-024-02396-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.